
Original Article

The International Journal of
Robotics Research
2024, Vol. 0(0) 1–25
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649241278372
journals.sagepub.com/home/ijr

Real-time reactive task allocation and planning
of large heterogeneous multi-robot systems with
temporal logic specifications

Ziyang Chen and Zhen Kan

Abstract
Existing methods for the task allocation and planning (TAP) of multi-robot systems with temporal logic specifications
mainly rely on optimization-based approaches or graph search techniques applied to the product automaton. However,
these methods suffer from high computational cost and scale poorly with the number of robots and the complexity of
temporal logic tasks, thus limiting the applicability in real-time implementation, especially for large multi-robot systems. To
address these challenges, this work develops a novel TAP framework that can solve reactive temporal logic planning
problems for large-scale heterogeneous multi-robot systems (HMRS) in real time. Specifically, we develop a planning
decision tree (PDT) to represent the task progression and task allocation specialized for HMRS with temporal logic
specifications. Based on the PDT, we develop two key search algorithms—the planning decision tree search (PDTS) and the
interactive planning decision tree search (IPDTS)—where PDTS generates an offline plan which will be modified online by
PDTS and IPDTS jointly to enable fast reactive planning if environmental changes or temporary tasks occur. Such a design
can generate satisfying plan for HMRS with multiple orders of magnitude more robots than those that existing methods can
manipulate. Rigorous analysis shows that the PDT-based planning is feasible (i.e., the generated plan is applicable) and
complete (i.e., a feasible plan, if exits, is guaranteed to be found). The algorithm complexity further indicates that the
solution time is only linearly proportional to the robot numbers and types. Simulation and experiment results demonstrate
that reactive plan can be generated for large HMRS in real-time, which outperforms the state-of-the-art methods.

Keywords
Task allocation and planning, temporal logic, heterogeneous multi-robot systems, planning decision tree

Received 15 December 2023; Revised 30 June 2024; Accepted 8 August 2024

1. Introduction

Recent advances in robotics have enabled robots to operate
beyond structured manufacturing environments into more un-
structured and dynamic workspaces (Garrett et al., 2021; Yu and
Dimarogonas, 2022). In these applications, robots with distinct
sensing andmanipulation capabilities can form a heterogeneous
multi-robot system (HMRS) to accomplish specialized tasks
with great versatility. It is highly desired that the HMRS can
engage in collaborative tasks with prompt responsiveness to
environmental and task-related changes. For instance, consider a
fire-fighting scenario that requires a group of heterogeneous
robots with different sensors (e.g., visual, infrared, and lidar
sensors) to provide persistent surveillance over possible fire
spots and search for survivors. If detected, such requests need to
be promptly handled (e.g., extinguish the fire and rescue the
survivor). A crucial step toward its success is a timely and
reactive task allocation and planning (TAP), which is concerned
with assigning the tasks (e.g., the fire-fighting and rescue tasks)
to the robots based on their capabilities and current states and

planning the task collaboration accordingly. Despite recent
progress of multi-robot TAP, below are the significant chal-
lenges to be addressed.

1.1. Large-scale system

Temporal logics, such as linear temporal logic (LTL), are
capable of expressing complex robotic tasks beyond point-
to-point navigation. However, building upon the transition
system and the automaton, the size of the product automaton
grows exponentially with the number of robots. Thus,
conventional model checking methods suffer from the curse

Department of Automation, University of Science and Technology of
China, Hefei, China

Corresponding author:
Zhen Kan, Department of Automation, University of Science and
Technology of China, No. 443, Huangshan Road, Hefei 230026, China.
Email: zkan@ustc.edu.cn

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649241278372
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0003-2069-9544
mailto:zkan@ustc.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649241278372&domain=pdf&date_stamp=2024-10-11

of dimensionality, rendering them arduous to effectively
address a large number of robots with LTL specifications.
This issue is further exacerbated if robots with different
capabilities and mutually dependent goals are involved.
Hence, there is a growing need for online scalable methods
for the TAP of a large HMRS with LTL specifications.

1.2. Reactive planning

Since the workspace is often dynamic and not fully known a
priori, the offline plan is significantly restricted, as the pre-
assigned tasks and planning can be found prohibitive to the
robots during the runtime. For instance, in the fire-fighting
case, the fire spots are time-varying and hard to predict, ne-
cessitating the robot to adapt to environmental changes. Hence,
reactive planning that can actively respond to the change of
environment (e.g., time-varying fire spots) and dynamic task
request (e.g., the detection of survivors) is desired.

1.3. Timely planning

Obtaining a feasible solution to the TAP of HMRS, espe-
cially for a large group, can be time consuming and
computationally expensive. For reactive planning, it is ar-
guable that a timely TAP with shorter solution time (pos-
sibly sub-optimal) is more preferable, especially for
temporary local task requests that require the robots to react
quickly and effectively. For instance, once a survivor is
detected, the time window to rescue is short. Hence, a timely
coordination and planning of HMRS is highly desired.

Motivated by the above practical challenges, this work
considers a heterogeneous multi-robot system where the
robots are of different types to capture different capabilities.
Due to rich expressivity of temporal logic, LTL is employed
to specify the collective tasks, where each task may require
robots of multiple types to collaborate to satisfy the spec-
ification. Since the TAP problem for heterogeneous multi-
robot systems is NP-hard (Luo and Zavlanos, 2022),
existing approaches to this problem become intractable for
large-scale applications. To address this challenge, we
develop a novel framework that can solve TAP problems in
real time for large-scale HMRSwith potential reactive tasks.
In this work, by reactive tasks, we mean local events, such
as agent failures, task and environmental changes, or
complex temporary tasks, that require the agents to adapt to.
Specifically, we develop a novel planning decision tree
(PDT) to record the task progress and the system state
without sophisticated product automaton. Based on the
PDT, we then develop a real-time TAP framework for timely
reactive planning of HMRS. The planning decision tree
search (PDTS) is developed for fast TAP and can be applied
to offline planning and re-planning. The interactive plan-
ning decision tree search (IPDTS) is then developed for
multi-task planning, which can be applied to unexpected
temporary tasks.

The PDT-based TAP framework has the following ad-
vantages. First, it is applicable to large-scale HMRS. Instead

of constructing sophisticated product automaton as in many
existing works, the developed PDT encodes the sub-tasks
and task progression in a tree incrementally. Such a design
can generate satisfying plan for HMRS with multiple orders
of magnitude more robots than those that existing methods
can manipulate. As shown in simulation, the PDT-based
framework can deal with HMRS with more than 200 task
states, 100 robot types, and 104 robots and beyond. Second,
without searching in system states, the PDT-based TAP
framework shows significant savings in resources, not only
in terms of memory to save the runtime data, but also in
terms of computational cost compared with optimization-
based or graph search techniques. Therefore, it can achieve
timely planning in real-time. Finally, it enables reactive TAP
for HMRS. To account for possible agent failure, task and
environmental change, and complex temporary task, the
developed PDTS and IPDTS are proven to be feasible (i.e.,
the generated TAP solution is applicable) and complete (i.e.,
a feasible TAP solution, if exits, is guaranteed to be found).
Rigorous analysis further indicates that PDTS and IPDTS
are computationally efficient, that is, the solution time of
finding a satisfying plan is only linearly proportional to the
robot numbers and types. Extensive simulation and ex-
periment results demonstrate that the PDT-based TAP
outperforms the state-of-the-art methods.

2. Related works

2.1. Task specifications and allocation

Temporal logics (TL), such as linear temporal logic (LTL),
computation tree logic (CTL), and signal temporal logic
(STL), recently gain popularity in robotics due to its ability
in specifying a rich class of robotic tasks (Belta et al., 2007).
By logically reasoning about the temporal ordering of
events at the task level, temporal logics can describe
complex tasks beyond traditional go-to-goal navigation for
robotic systems. For instance, tasks such as visiting targets
sequentially (e.g., reach A, and then B, and then C) or
surveillance (e.g., visit A and then B infinitely often) can be
conveniently expressed by temporal logics. By specifying
tasks as TL formulas, tools from formal verification (Baier
and Katoen, 2008) can be used to generate task allocation and
motion plans. Given that robots operating in complex en-
vironments are often subjected to various uncertainties, such
as stochastic motion behaviors and uncertain environment
properties, there has been increasing research attention de-
voted to addressing Markov decision processes (MDPs) with
linear temporal logic (LTL) specifications through probabi-
listic model checking, such as co-safe LTL tasks (Lacerda
et al., 2019; Ulusoy et al., 2014; Jagtap et al., 2020), sto-
chastic game-based approaches (Ramasubramanian et al.,
2020), and learning-based approaches (Shah et al., 2023;
Cai et al., 2021a,b). In the works of Kloetzer and Belta
(2010), Guo and Dimarogonas (2015), and Ulusoy et al.
(2013), LTL was exploited to describe the complex collective
tasks for multi-robot systems, where the LTL tasks were

2 The International Journal of Robotics Research 0(0)

assigned locally to the robots. However, the construction of a
team product for robots with individual goals can lead to state
explosion. Hence, such approaches cannot scale well for
large multi-robot systems.

An alternative is to assign a global LTL specification to
the team, where the global LTL can be either explicitly
(Kantaros and Zavlanos, 2020; Luo et al., 2021; Smith et al.,
2011) or implicitly (Luo and Zavlanos, 2022; Lacerda and
Lima, 2019) assigned to individual robots. A bottom-up
task coordination strategy was developed in Guo and
Dimarogonas (2017), which contains an offline initial
plan synthesis and an online coordination scheme. The
works of Guo et al. (2017) and Schuppe and Tumova (2020)
specify individual TL formulas for each agent and complete
the group task through coupling between the formulas. For
global LTL specifications that are not explicitly assigned to
the robots, task decomposition is typically used. For in-
stance, the global specification was decomposed into local
specifications and then allocated to the robots in Kantaros
and Zavlanos (2016). Similarly, by exploiting the structure
of the automata, the global specification was decomposed
into multiple sub-tasks in Schillinger et al. (2018a). The
cross-entropy temporal logic optimization was developed in
Banks et al. (2020) to optimally allocate tasks to a team of
robots given a global task specification. However, the
aforementioned works do not account for heterogeneous
capabilities of the multi-robot system.

By exploiting different capabilities of robots, the de-
composition of graph-based automaton was investigated in
Schillinger et al. (2018b) and Luo and Zavlanos (2022). In
Sahin et al. (2019), the counting LTL was proposed to
capture rich heterogeneous specifications and an integer
linear program (ILP) approach was developed to search for
feasible plans. In recent works of Leahy et al. (2022,
2021), a variant of STL, namely, CaTL, was introduced to
express the task specifications in a more compact form and
mixed integer linear program (MILP) was formulated for
task coordination. Unfortunately, ILP/MILP is in general
computationally expensive and thus cannot scale well and
provide timely planning if a large number of heteroge-
neous robots is considered. As an extension of CaTL,
CaTL+ was developed in Liu et al. (2023), which can be
solved by a two-step optimization method. Despite recent
progress, few existing methods can generate timely
planning for large HMRS. Instead, leveraging the tree
structure and the developed prune algorithm and traversal
rules, the PDT-based TAP framework significantly im-
proves the computational time and search efficiency in
finding a satisfying plan. Hence, our approach has much
less complexity and computational time than MILP and
can be applied in real-time.

2.2. Reactive planning

Reactive temporal logic planning can account for envi-
ronment uncertainties or local temporary tasks (Cai et al.,
2020; Partovi et al., 2018; Vasilopoulos et al., 2021). In

general, reactive planning can be environment-specific,
task-specific, agent-specific, or a combination thereof.

The environment-specific reactive planning focuses on
unknown or dynamic environments. For instance, in such
environments, an agent will re-plan a new local path
(Ulusoy and Belta, 2014). Otte and Frazzoli (2016) de-
veloped the fast re-planning RRTX algorithm, a variant of
RRT, which accelerates the speed of path re-planning. Then,
He et al. (2017) developed an approach enabling the agent to
modify its entire task plan based on observed environmental
states rather than just the local path. Leveraging an incre-
mental method with rapid solution speed, Kantaros et al.
(2020) applied environment-specific reactive planning in
multi-agent systems, enabling fast re-planning in unknown
environments during task performance.

The agent-specific reactive planning addresses failures
such as loss of capabilities (e.g., manipulation or percep-
tion) or complete removal of the agent (e.g., due to mal-
function or battery depletion). For instance, the
simultaneous task allocation and planning developed by
Faruq et al. (2018) provides probabilistic safety guarantees
on performance and reallocates tasks if individual agents
fail. Considering heterogeneous agents and unexpected
failures in agent capabilities, Kalluraya et al. (2023) pro-
posed a resilient mission planning algorithm that reallocates
sub-tasks to robots based on their current functioning skills,
minimally disrupting existing team motion plans. To further
enhance the autonomy of reactive planning, Zhao et al.
(2023) devised a failure-aware task planning approach to
address internal robot failures, which cannot be directly
measured but must be inferred from agent actions.

The task-specific reactive planning primarily addresses
changes in tasks. For instance, Cai et al. (2023) considered
task changes through soft LTL constraints, which handle
partially infeasible tasks in dynamic environments by al-
lowing certain tasks to be relaxed. Beyond focusing on
changes in global tasks, it is also crucial to address addi-
tional local tasks. Vasile et al. (2020) demonstrated that
independent local tasks can be integrated with global tasks
to achieve a joint plan. However, this approach is not
suitable for complex and coupled local tasks. To manage the
convergence of multiple tasks, Finkbeiner et al. (2021)
proposed LiveLTL, which facilitates joint planning for
both global and local tasks.

To address reactive planning, both fast solution times and
the ability to record task progress are essential. For het-
erogeneous agent systems, optimization-based approaches
such as ILP/MILP are the primary solutions (Leahy et al.,
2021; Liu et al., 2023). However, these approaches struggle
with dynamic requests (e.g., local temporary tasks or task
changes) during task operations. If the current task is in-
terrupted, ILP/MILP must be reformulated to obtain a
feasible plan. Additionally, optimization-based approaches
are generally computationally expensive, making them
challenging to apply for real-time reactive planning. Al-
though some search-based methods have lower complexity
(Kantaros and Zavlanos, 2020), they cannot be directly

Chen and Kan 3

applied since the assignment is not determined. Luo and
Zavlanos (2022) used search for task decomposition before
applying MILP. Zhou et al. (2022) proposed a hierarchical
approach. Despite its ability to adapt to locomotion failures
and human interventions, it does not scale well due to the
use of product automaton.

In contrast, the PDT-based planning in this work builds a
tree to facilitate reactive task allocation and planning
without requiring sophisticated graph products, which can
be applied to large-scale HMRS in real-time. In our previous
work (Chen et al., 2024), we developed a fast mission
planning framework to manage large-scale multi-robot
systems with temporal logic specifications in real-time.
However, task allocation was not addressed in Chen
et al. (2024), as each sub-task was pre-assigned in the
task specification. Additionally, this work addresses joint
planning for both temporary reactive and global tasks, an
aspect not covered in Chen et al. (2024).

3. Preliminaries

Due to the rich expressivity of temporal logic in formulating
robotic tasks, LTL is employed in this work for task
specifications of HMRS. An LTL formula is built on a set of
atomic propositions AP, standard Boolean operators such as
⋀ (conjunction), ⋁ (disjunction), ¬ (negation), and temporal
operators such as F (eventually), X (next),G (always), and U
(until). The syntax of an LTL formula Φ is defined as

Φdap j ¬Φ j Φ1 ⋁Φ2 j FΦ j XΦ j GΦ j Φ1UΦ2,

where the atomic proposition ap 2 AP indicates the
properties of system states that can be either true or false,
GΦ means Φ is true for all future moments, FΦ means Φ is
true at some future moments, XΦmeans Φ is true at the next
moment, and Φ1UΦ2 means Φ1 is true until Φ2 becomes
true.

The semantics of an LTL formula are defined over an
infinite sequence σ = σ0σ1… with σi 2 2AP for all i ≥ 0,
where 2AP represents the power set of AP. Denote by σ ╞Φ
if the word σ satisfies the LTL formula Φ. Detailed de-
scriptions of the syntax and semantics of LTL can be found
in Baier and Katoen (2008).

An LTL formula can be translated to a nondeterministic
Büchi automaton (NBA).

Definition 1. An NBA is a tuple B ¼ fS, S0,Σ, δ,Fg,
where S is a finite set of states, S0 ⊆ S is the set of initial
states, Σ = 2AP is the finite alphabet, δ: S × Σ → 2S is a
transition function, and F ⊆ S is the set of accepting
states.

Let Δ: S × S → 2Σ denote the set of atomic propositions
that enables state transitions in B, i.e.,"σ 2 Δ(s, s0), s0 2 δ(s,
σ). A valid run s = s0s1s2… of B generated by the word σ =
σ0σ1σ2… with σi+1 2 Δ(si, si+1) is called accepting, if s
intersects withF infinitely often (Clarke et al., 1999). In this
paper, NBA will be used to track the progress of the

satisfaction of LTL tasks. To convert an LTL formula to an
NBA, readers are referred to Gastin and Oddoux (2001) for
algorithms and implementations.

4. Problem formulation

To facilitate problem formulation, we first introduce the
notations used throughout this article. Let N and N½ � denote
the set of natural numbers and the shorthand notation for {1,
…, N}, respectively. Given a set A, denote by Aj j and 2A the
cardinality and power set of A, respectively. Given a se-
quence σ = σ0σ1…, denote by σ j…½ � ¼ σjσjþ1… and
σ …j½ � ¼ σ0…σj.

4.1. Environment and heterogeneous
multi-robot systems

Consider a fleet of robots R ¼ rif gnai¼1 operating in a
bounded workspace M � R

2, where na is the number of
robots. Suppose the workspace M contains l 2N non-
overlapped regions of interest. Denote by MI and MNI the
regions of interest and the regions of non-interest (e.g.,
obstacles or the regions that the robots cannot traverse or
operate within), respectively, where Mi \ Mj = ∅ and Mi \
MNI = ∅,"i ≠ j and i, j2 l½ �. It is assumed that eachMi, i2 l½ �,
is associated with an atomic proposition.

Suppose that the robots are heterogeneous and of nc
different types (i.e., with different capabilities such as
ground mobility, aerial mobility, and object manipulation).
It is further assumed that each robot belongs to exactly one
type. We denote by r j

i the robot i2 na½ � of type j2 nc½ � and
denote by Kj the set that contains all robots of type j, i.e.,P

j Kj

�� �� ¼ na and Ki \Kj ¼ ∅, "i ≠ j. Let pi kð Þ 2M denote

the position of robot i in the workspace at time k 2N [0f g.
In particular, pi 0ð Þ represents the initial position of robot i.

Example 1. Imagine that a fleet of robots is tasked to
operate in a farm environment as illustrated in Figure 1.
The colored areas represent the regions of interestMi and
the thick white lines represent areas that the robots
cannot traverse (i.e., MNI). It is assumed that the robots
are of different types (e.g., wheeled mobile robots, and
quadrotors) and different Mi may require a group of
robots with different capabilities to serve.

4.2. Global collaborative tasks

Before formulating the global collaborative tasks, we first
introduce a set of atomic propositions api 2 AP, i2 np

� �
,

where np denotes the number of atomic propositions. For
instance, ap 2 AP can represent the task of visiting a desired
region of interest by a sub-group of robots of particular
types. Let L: M → AP be a labeling function that indicates
the atomic proposition associated with a position in M. To
specify the task allocation, define a set TK ¼ tk1,…, tknp

� �
,

4 The International Journal of Robotics Research 0(0)

where tki ¼ ntki1 , ntki2 ,…, ntkinc

� �
, i 2 [np], and the entry n

tki
j of

tki, j 2 [nc], indicates the total number of robots of type j.
That is, tki specifies the numbers and types of robots re-
quired to perform the atomic task api. By specifying LTL
formulas over AP with TK, robots can perform various
collaborative temporal–spatial tasks using their versatile
capabilities.

Example 2. Continue with Example 1. To collabora-
tively serve in the workspace, consider a set of atomic
propositions AP = {ap1, ap2, ap3, ap4, ap5}, where api, i
2 {1, …, 5} represents the sub-task of reaching the
region i, respectively. The associated task requirements

are TK ¼ tkif g5i¼1, where tk1 = (2, 2, 1), tk2 = (3, 2, 3),
tk3 = (2, 2, 2), tk4 = (5, 5, 5), and tk5 = (2, 2, 2). For
instance, tk1 indicates that ap1 requires two robots of type
1, two robots of type 2, and one robot of type 3. An
example global task is Φ = GFap1 ⋀ GFap2 ⋀ GFap3 ⋀

GFap4, which requires the fleet of robots to repeatedly
visit these regions while satisfying the task requirement
TK (i.e., for each api there are n

tki
j agents in Kj, j 2 [nc],

reaching the region i according to TK).

To facilitate task allocation and motion planning, we
construct an abstract task system (ATS) to relate the sub-
tasks, the temporal logic, the map, and the task
requirements.

Definition 2. The abstract task is defined as a tuple
T ¼ Q,AP,M ,TK,LA,LM ,LTð Þ, where Q is a finite set
of abstract sub-tasks, AP is the set of the atomic prop-
ositions, M is the workspace, LA: Q → AP indicates

the atomic proposition associated with the state inQ, LM:
Q → M maps q 2 Q to a position p 2 M, which satisfies
L(LM(q)) = LA(q) = ap, and LT: Q → TK indicates the
task requirements of an atomic task, i.e., LT(qi) = tki, qi 2
Q, tki 2 TK.
The abstract task T in Def. 2 is developed to abstract the

task in the workspace into a finite set of abstract sub-tasks.
That is, each abstract task q 2 Q uniquely corresponds to an
atomic proposition LA(q), which is executed at LM(q) in the
workspace requiring robots LT(q). For instance, given
Example 2, we can construct the abstract states Q = {q1, q2,
q3, q4, q5}, where LA (qi) = api 2 AP indicates that api is
associated with the abstract state qi, LM(qi) indicates the
position in M that api can be executed, and LT (qi) = tki
indicates the task requirement of qi.

4.3. Reactive tasks

During task operation, the ability to react to unexpected
environmental and task changes is highly desirable. In this
work, environmental changes may entail previously exe-
cutable propositions becoming invalid (e.g., an accessible
area becomes inaccessible) so that re-planning is required
for the robots to adapt to the changed environment. It should
be noted that, if such environmental changes conflict with
the task specification (i.e., no feasible plan exists), our
approach will yield no solution. Since the task allocation
and planning within a potential infeasible environment is
beyond the scope of this work, in the subsequent devel-
opment, we assume that the environmental changes will not
conflict with the task specifications. Apart from environ-
mental changes, the task change also includes temporary
tasks (e.g., rerouting for locally encountered events), change
of task requirement, and unexpected robot failures. Such
tasks are considered as reactive tasks in this work, which
require robots to respond reactively. Specifically, we mainly
focus on the following types of reactive tasks.

· Changes of environment refer to the task re-planning of
HMRS to adapt to environmental changes (e.g., the areas
of interest that were previously accessible may occa-
sionally become restricted to the agent due to the
presence of moving obstacles).

· Changes of task requirements refer to the cases that the
robots are assigned with new task assignment TK while
the task specifications remain unchanged.

· Local temporary tasks refer to the cases that the robots
are asked to deal with temporary tasks (e.g., an urgent
local service) while respecting the global task.

· Failure recovery refers to the ability of the HMRS to
adapt to unexpected robot failures (e.g., removal from
the team due to malfunction or hardware issues) during
mission operation.

It is assumed that robot failure can be detected either by
observation (e.g., no longer moving as commanded) or via
wireless communication to report hardware failures.

Figure 1. A farm environment, where regions 1, 2, and 3 represent
the planting areas 1, 2, and 3, respectively. Region 5 represents
the livestock area. Region 4 represents the warehouse. Region 6
represents the other facilities. The thick white lines represent the
fence that the robots cannot traverse.

Chen and Kan 5

Both co-safe LTL (Kupferman and Vardi, 2001; Vasile
et al., 2017) and LTLf (Tabajara and Vardi, 2020) can
describe finite-length tasks. In this paper, co-safe LTL is
employed to represent the local reactive tasks. As indicated
in Lacerda et al. (2014), given an LTL formulaΦ and a word
σ ¼ σ0σ1…2 ð2APÞω satisfying σ ╞ Φ, σ is said to have a
good prefix if there exists n2N and a truncated finite se-
quence σ[…n] such that σ[…n]σ[n…]╞ Φ for any infinite
sequence σ½n…� 2 ð2APÞω. Such a formula Φ is called a co-
safe LTL formula, which can be translated into a NFA (Cho
et al., 2017). The NFA is defined as
A ¼ SA, SA0,ΔA,Σ,FAð Þ, where SA, SA0, Σ, F A indicate the
set of states, the initial states, the words, the accepting states,
respectively, and ΔA : SA × SA → 2Σ records the feasible
words from one NFA state to another. Though defined
similarly to NBA, NFA accepts finite words only while the
accepted language of NBA is a ω-language. More expla-
nations about NFA can be found in Baier and Katoen
(2008).

4.4. Planning model

Given the workspace M and the NBA BΦ generated by the
LTL formulaΦ, the plan is defined as a tuple Π ¼ q, s,Cð Þ,
where q = q0q1q2… is the trajectory of the states in Twith
qi 2 Q, s = s0s1s2… is the trajectory of BΦ states corre-
sponding to q where si indicates the automaton state after
the atomic task is applied at qi, and C = C0C1C2, … in-
dicates the task allocations along the state trajectories.
Specifically, Ci ¼ ðci1, ci2,…, cinaÞ, i2N[0f g, where the
jth entry indicates whether or not the robot rj is involved in
the task LA(qi), that is, cij ¼ 1 if involved and cij ¼ 0

otherwise. C is said to satisfy TK, denoted as C ╞ TK, if

"Ci ¼ ðci1,…, cinaÞ 2C and tk¼ LTðqiÞ¼ ntk1 ,n
tk
2 ,…,ntknc

� �
it holds that ntkj ¼

P
rk2Kj

cik , "j 2 [nc]. Note that C0 in-

dicates an empty task allocation, since the initial state q0
corresponds to an empty task. By denoting Πi = (qi, si, Ci),
i2N[0f g, we can rewrite Π = Π0Π1Π2, … as a series of
plan tuples. Given a planΠ = (q, s, C), let π ¼ LA qð Þ be the
word generated by the trajectory q. The plan Π is said to
satisfy Φ and the task requirements TK, denoted as
Π ╞ Φ,TKð Þ, if π ╞ Φ and C ╞ TK.

4.5. Problem

Given the NBA BΦ, the accepting run s = s0s1s2… ofBΦ can
be generally written in a prefix–suffix structure, where the
prefix part starting from an initial state and ending at an
accepting state is traversed only once and the suffix part, a
cyclic path of accepting states, is traversed infinitely often
(Baier and Katoen, 2008). Based on the prefix–suffix
structure, the plan Π can be written in the form of Π =
ΠpreΠsufΠsuf…, where Πpre and Πsuf are finite prefix stage
and finite cyclic suffix stage of the plan, respectively. Since
the generated suffix part may not start at the end state of the

identified prefix part, or the end state of local temporary task
does not match with that of the global task, a transition stage
Πtra is introduced to bridge the gap between the end state of
prefix part and the starting state of the newly identified
suffix part. Consequently, the infinite plan can be written in
the form of Π = ΠpreΠtraΠsufΠsuf… with three types of task
stages. Denote by Πfinite = ΠpreΠtraΠsuf the finite plan and
since, Πfinite ╞ Φ,TKð Þ also indicates that Π ╞ Φ,TKð Þ,
we only need to determine Πpre, Πtra, and Πsuf.

Problem 1. Given a heterogeneous multi-robot system
operating in a workspace M with an LTL formula Φ and
task requirement TK, the goal is to develop a real-time
reactive task allocation and planning strategy that sat-
isfies the task Φ and TK, that is, Πfinite ╞ Φ,TKð Þ, in the
environment with reactive tasks.

5. Task allocation and planning

This section presents a real-time reactive TAP frame-
work for heterogeneous multi-robot systems. An over-
view of the approach is shown in Figure 2, which
consists of an off-line planning module, an on-line
planning module, and a path planning module. At the
basis of these modules is the development of a planning
decision tree (PDT). In the subsequent development, we
will first present the developed PDT, and then explain
how PDT can be leveraged to develop PDTS and IPDTS
for real-time reactive TAP of HMRS in an environment
with reactive tasks.

5.1. Planning decision tree (PDT)

The tree-search methods are promising candidates for the
decision-making of robotic systems (Kiesbye et al., 2022).
Despite its recent progress, new challenges arise when
considering the TAP of HMRS. When the cooperative tasks
are specified by complex temporal logic constraints, the
TAP is generally performed over the product of the au-
tomaton that represents the LTL tasks and the transition
system that represents the system dynamics. Due to the large
state space of the product, the tree-search based approach
soon becomes intractable to search over such a product graph.
For instance, consider a relatively small multi-robot system,
for example, 15 robots with 16 NBA states operating in a
10 × 10 grid world. The size of the product automaton can
reach 16 × (10 × 10)15 and the upper bound of the tree size
without pruning can reach (16 × (10 × 10)15)!, which makes
tree-search based methods impractical.

To prevent the issue of state explosion, we develop the
planning decision tree (PDT) to avoid product automaton,
denoted by TD ¼ VT , ET ,Costf g, where VT ¼ Ndif g, i = 0,
1, 2…, represents the set of nodes as defined in Def. 3, ET

represents the set of edges capturing the hierarchical tran-
sitions among the nodes in VT , that is, Nd,Nd

0	

2ET if

Nd0 is the child node of Nd, and Cost :VT →R
þ measures

6 The International Journal of Robotics Research 0(0)

the cost of sub-tasks from Nd0 to the current node. The key
idea behind TD is to restrict the search within the automaton
states and the abstract sub-tasks, rather than the whole state
space of the system, to enable fast and effective search of
satisfying and executable plan. It is worth pointing out that,
for the aforementioned example, as system states are di-
rectly obtained by iteration without searching or sampling in
the product automaton, the state space size in PDT can be
reduced to (16)! and after proper pruning, the space size can
even be reduced to 162.

Definition 3. The planning decision tree TD is con-
structed based on a set of nodes Ndif g, i2N[0f g,
where Nd0 represents the root of TD and each node is
defined as a tuple

Ndi ¼ Bs,Ts,Cs,ETpre,EPpre

	

where

· Bs 2 S denotes the automaton state of node i;
· Ts 2 Q denotes the sub-task of node i;
· Cs ¼ ðc1, c2, c3,…, cnaÞ denotes the task allocation of the

corresponding sub-task Ts;
· EPpre ¼ ppre_1,…, ppre_na

� �
denotes the predicted robot

locations after completing the preceding and current
tasks, where ppre_i 2 M is the predicted location of ri,
denoted as EPpre(i);

· ETpre ¼ tpre_1,…, tpre_na
� �

denotes the predicted time-
stamp after completing the preceding and current tasks,
where tpre_i is the predicted timestamp of ri, denoted as
ETpre(i).

By Def. 3, we define the cost of Ndi as the predicted
maximum task completion time of all agents, that is,
CostðNdiÞ ¼ max Ndi:ETpre

� �
. To facilitate the following

analysis, we denote byParent Ndið Þ the parent node ofNdi (i.e.,
ParentðNdÞ,Ndð Þ 2 ET) and denote by PreAuSt Ndið Þ the
automaton states of nodes that have been traversed in the same

task stage fromNd0 toNdi. To indicate the tree expansion status,
we define FlagTra :VT → f0; 1g, where FlagTra(Nd) = 1 if
Nd 2VT cannot generate its child nodes and 0 otherwise. To
indicate the task stages of Πfinite, we define Prog :VT →
pre, tra, s, othf g to specify the task stages of nodes, where pre

and tra represent the prefix and the transition stage, respectively.
As the cyclic suffix part requires to start and end at the same
state, s 2 S in Prog is such a state verifying whether the first
suffix stage ends. Once the first suffix stage completes, due to
the consideration ofΠfinite, the task stage proceeds to oth, which
indicates the end of search.

In Def. 3, both time and position information in per-
forming sub-tasks are incorporated in the modeling of
system states in the tree TD. Such a design can conveniently
model the agents performing different sub-tasks at different
time, avoiding dense discretization of unnecessary planning
details as in many existing approaches. Therefore, com-
pared with search or sampling-based methods, PDTS only
need to consider the areas of interest, which greatly reduces
the search space. For the aforementioned multi-robot ex-
ample, the searching space can be reduced to (16 × Q)!.

The tree TD encodes the automaton states and system
states in a hierarchical tree structure to enable fast and
effective TAP for HMRS tasks with temporal logic con-
straints. The tree TD grows incrementally from the root node
by searching sub-tasks satisfying LTL task specifications.
The best task allocation for each sub-task is determined
based on the system states, which are continuously updated
along with the task evolution. A feasible plan is then
generated by tracing back from the leaf node with the least
cost to the root node. Specifically, as indicated in Def. 3,
each node contains task planning related states (i.e., Ts, Bs,
and Cs) and system related states (i.e., EPpre, ETpre). Given a

node Nd ¼ Bs,Ts,Cs,ETpre,EPpre

	

, Πi = (Ts, Bs, Cs)

represents a plan tuple in Π = Π0Π1Π2…. The performance
of Ndi is then evaluated via Cost, which is determined based
on the predicted task completion location EPpre and the
predicted task completion timestamp ETpre. Throughout this

Figure 2. The overview of the real-time reactive TAP framework, which consists of an off-line and on-line TAP module and a path
planning module. Given the map M, the LTL task Φ, and the task requirement TK, the PDTS first generates an initial off-line plan,
which is fed to the path planning module for real-time implementation. During task operation, if environment and task changes are
encountered, reactive plan will be obtained by PDTS and IPDTS jointly. Existing methods (e.g., probabilistic roadmap or receding
horizon control) are used in the path planning module.

Chen and Kan 7

work, we will adopt the data structure to represent the node
components, for example, Ndi.Bs represents the automaton
states associated with node i. Note that, for any nodeNdi 2VT ,
it holds that LA Ndi:Tsð Þ 2Δ ParentðNdiÞ:Bs,Ndi:Bsð Þ, where
Δ2Bf is defined in Def. 1 ensuring that the sequence of sub-
tasks satisfies the temporal logic specification.

5.2. Planning decision tree search (PDTS)

As discussed in the overview in Figure 2, the first step is to
generate an offline task allocation and planning to Prob. 1.
That is, given the workspace M, a global LTL task
specification ΦG, and the task allocation TK, the goal is to
obtain a feasible and satisfying plan Πfinite╞ ΦG,TKð Þ
such that the task can be completed efficiently, that is,
completing the first loop of the suffix stage with minimum
cost. Such an offline global plan will be considered as a
base solution, which will be modified online to enable
reactive planning by taking into account potential
environmental changes and local temporary tasks in
Section 5.3.

This section presents how the tree TD in Def. 3 is
constructed and exploited to develop the PDTS algorithm
for an offline plan that satisfiesΦG. In particular, as outlined
in Alg. 1, the algorithm is initialized in lines 1–3 by con-
structing the automaton BG, the abstract task T, and the root
Nd0 of PDT. The tree TD is expanded by adding child nodes
using Children_Generation in lines 4–14. The tree TD stops
growing if all nodes have been traversed, that is, "Nd 2VT ,
FlagTra (Nd) = 1. The function Get_Plan is then used to
obtain the plan [Πpre, Πtra, Πsuf]. The following running
examples are used to explain the key functions in Alg. 1.

Example 3. Consider a workspace as in Figure 3(a),
which consists of three areas of interest and four robots of
two types (i.e., r1, r2f g and r3, r4f g). The robots need to

visit region 1 once and repeatedly visit region 2 and 3. The
visit of each region requires two robots in total, one of each
type. The ATS T is then constructed with Q = {q1, q2, q3},
and for i2 1; 2; 3f g, LA(qi) = api, LT(qi) = (1, 1), and
LM(qi) indicates the corresponding region of api. The LTL
task is formulated as Φ = Fap1 ⋀ GFap2 ⋀ GFap3, which
can be converted into the NBABΦ as shown in Figure 3(b).
The root node Nd0 is set as Nd0.Bs = s0 2 S0,Nd0.ETpre(i) =
0, Nd0.EPpre(i) = pi(0), i2 1; 2; 3f g with empty task and
allocation. The tree structure related functions are initialized
as PreAuSt(Nd0) = {s0}, FlagTra(Nd0) = 0, Prog(Nd0) =
pre. The tree grows from the root Nd0 by generating child
nodes Children using Children_Generation and Bound.
After adding child nodes, it is set FlagTra(Nd) = 1 which
indicates the parent node has been traversed and will no
longer generate child nodes.

5.2.1. Function Children_Generation. A key component in
Alg. 1 is the function Children_Generation, which grows
TD by adding possible child nodes. The function
Children_Generation is task-oriented, that is, only the sub-
tasks and NBA states will be searched. The system states
will be updated iteratively by the searched sub-task, task
allocation, and previous system states rather than searching
in product automaton and time automaton (modeling the
waiting time for cooperation). Therefore, for the afore-
mentioned multi-robot example, the searching space can be
further reduced to (16)!. Specifically, suppose Nd is the
current node in TD and Alg. 2 explains how the child nodes
of Nd can be constructed. Particularly, for each NBA state s
2 S \ PreAuSt (Nd), we enumerate all possible sub-task q 2
Q satisfying LAðqÞ 2Δ Nd:Bs, sð Þ, where Δ Nd:Bs, sð Þ is the
set of words over 2Σ enabling the transition from Nd.Bs to s.
Then, for each pair of s and q, we can create a new child
node Child and set its sub-task, automaton state, and par-
ent node as q, s, and Nd, respectively. The function
Request_Response is then invoked to obtain the task allo-
cation Child.Cs, which together with Nd.EPpre and Nd.ETpre
can obtain the child node’s predicted completion position
Child.EPpre and predicted completion time Child.ETpre. To
evaluate the performance of the node, the timestamp that
completes the current task is treated as the cost in this work,
that is, the cost Cost(Child) is set as max Child:ETpre

� �
to

Figure 3. (a) The operating environment with three areas of
interest (i.e., ap1, ap2, and ap3) and four robots ri, i2 4½ �, of
two types. (b) The NBA BΦ corresponding to Φ = Fap1 ⋀
GFap2 ⋀ GFap3 includes four NBA states and one accepting
state s3 2F .

8 The International Journal of Robotics Research 0(0)

indicate the worst case completion time among all robots.
The task stage Prog(Child) is updated by Flag ProgðNdÞ, sð Þ,
where the function Flag is defined as

FlagðProg, sÞ ¼

Prog, if sÏF ,
tra, if s2F ,Prog ¼ pre,
s, if s2F ,Prog ¼ tra,
oth, if Prog ¼ s:

8>><
>>: (1)

If Child is in the same stage with Nd, its PreAuSt is updated by
adding s to PreAuSt (Nd), otherwise it is set as empty. Finally,
Child is added to the set Children to expand TD.

Example 4. Continue with Example 3. Starting from
the root Nd0, the function Children_Generation is
invoked to generate a child node Nd1, where Nd1.Bs =
1 (i.e., the automation state in BΦ), Nd1.Ts = q1 with
LA(q1) = ap1, and the task allocation Nd1.Cs = (1, 0, 1,
0). The tree structure function is set as Parent(Nd1) =
Nd0. Based on Nd1.Ts, Nd1.Cs, and preceding system
states Nd0.ETpre and Nd0.EPpre, the current system
states Nd1.ETpre and Nd1.EPpre can be obtained by the
function Request_Response. The cost is set as
CostðNd1Þ ¼ maxi2½na� Nd1:ETpre ið Þ

� �
, that is, the

maximum predicted task completion time. Since the
automaton state Nd1:Bs ÏF , the task stage is in the
prefix stage, that is, Prog(Nd1) = Prog(Nd0) = pre.
Then, PreAuSt(Nd1) = {s0, s1} and the traversal flag is
set as FlagTra(Nd1) = 0 for subsequent expansions.

5.2.2. Function Request_Response. Given the sub-task q 2
Q, and the associated task requirement tk = LT(q) 2 TK, the goal
ofRequest_Response in Alg. 3 is to determine a task allocation
for q. The underlying idea is to predict the completion time of

tasks for each robot and select those with the least completion
time. Recall that EPpre and ETpre indicate the predicted robot
locations in M and the predicted completion time of preceding
and current sub-tasks. Let ~ETpre denote the predicted arrival time
of robots for the current task q. Hence, given the position LM(q)
and the allowed maximum traveling velocity vmax 2R

þ, as-
suming that ri participates in the current task, the predicted arrival
time at LM(q) after completing preceding sub-tasks is estimated
as

~ETpre ið Þ ¼ ETpre ið Þ þ 1

vmax
LM qð Þ � EPpre ið Þ

�� ��: (2)

As the completion of sub-task q requires arrival of all selected
robots and the completion of the last sub-task Parent (Child).Ts,
based on task requirement LT(q), we select the fastest arriving
agents for the sub-task q. Specifically, for"j2 [nc], the robots in
Kj are sorted from small to large according to ~ETpre, whereKj is
the set of robots of type j. Let nj ¼ tk jð Þ denote the number of
robots of type j required for q. Then, for each type j, the first nj
robots fromKj are fastest arriving robots and are selected in the
task allocation.

Lines 5–13 explain how Nd is updated to ~Nd. The predicted
positions of selected agents are updated to LM(q) and the pre-
dicted completion time of selected agents are firstly updated to
their arrival time. Then, ~Nd:ETpre is further updated in lines 16–
19 to indicate the predicted completion time of the sub-task q for
selected agents, which is the maximum of predicted completion
time of all agents.

Chen and Kan 9

Example 5. Continue with Example 4. The new child node
Nd2 is generated from Nd1. Since r1 and r3 have been
selected for the sub-task Nd1.Ts = q1, the predicted com-
pletion position and time of r1 and r3 are updated as
Nd1.EPpre(i) = LM(q1), Ndi.ETpre(i) = maxj2{1,3}1vjk
LM(q1) � pj(0)k, i 2 {1, 3}. Then, based on the function
Request_Response, we can obtain the task allocation,
predicted completion position and time for Nd2. For each
robot ri 2 R, the earliest arrival time ~ETpreðiÞ to sub-task
Nd2.Ts = q2 is Nd1.ETpre(i) + 1

vi
kLM(q2) � Nd2.EPpre(i)k.

Since r2 has the smallest arrival time and the sub-task q2
requires a robot of type 1, r2 is selected. Similar procedure
applies for the selection of r4, which yields Nd2.Cs = (0, 1,
0, 1). Based on the task allocation, the predicted com-
pletion position and time of each robot are updated. Since
r1 and r3 have not been selected, their predicted completion
position and time do not change. For r2 and r4, the pre-
dicted position is updated to LM(q2) and the predicted
completion time is updated to the completion time of the
sub-task q2. When all selected robots arrive at LM(q2) and
the preceding sub-task Nd1.Ts = q1 has been finished, the
sub-task q2 can be executed. Therefore, the completion
time is the predicted maximum arrival time of each robot,
that is, maxi2½na� ~ETpre ið Þ

� �
.

5.2.3. Function Bound. To avoid unnecessary expansion of
TD,Bound is developed in Alg. 4 to reduce the search space of
TD by filtering out the nodes that do not contribute to the
planning. By pruning according to the NBA states, the search
space can be further reduced without affecting the completeness
of proposed method. For the aforementioned multi-robot ex-
ample, the searching space can be further reduced to (16)2.
Specifically, ifChild has the sameBs andProgwith a nodeNd in
TD and Cost (Nd) < Cost (Child), the Child will no longer be
traversed, otherwise the paths from theNd to its leaf nodes in TD

will all be pruned out. SinceProg (Child) = oth indicates that the
first suf phase has been completed, theChildwill also no longer
be traversed. Otherwise, Child will be kept in TD and can be
traversed.

Example 6. Continue with Example 5. After tree ex-
pansion, Nd3 has four child nodes as shown in Figure 4(a).
Since Nd4.Bs = Nd5.Bs = Nd6.Bs = s1 and Prog(Nd4) =
Prog(Nd5) = Prog(Nd6) = tra, according to the function
Bound, only one node among Nd4, Nd5, and Nd6 can be
expanded subsequently. Given that Nd4 has the minimum
cost, only Nd4 will be expanded and we set
FlagTra Nd5ð Þ ¼ FlagTra Nd6ð Þ ¼ 1 to indicate that Nd5
and Nd6 will no longer be considered in the following
planning. The other child of Nd3 is Nd7, which is set as
Nd7.Bs = s2 and Prog(Nd7) = tra. The nodes Nd4 and Nd7
are then selected as the parent nodes for the subsequent
expansion. Then,Prog(Nd15) = oth as shown in Figure 4(a).
By function Bound, Nd15 has finished the first suffix
stage and should not generate child nodes, that is,
FlagTra(Nd15) = 1.

5.2.4. Function Get_Plan. After constructing the tree TD, the
functionGet_Plan is invoked to generate a feasible planΠfinite=
ΠpreΠtraΠsuf. LetNdmin 2VT denote the node with the least cost
and Prog Ndminð Þ ¼ oth. Note that, by the definition of the
pruning function Bound, it indicates that Ndmin is the leaf node
ofTD that hasfinished thefirst suffix stage.As outlined inAlg. 4,
the general idea of generating the plan is to trace back fromNdmin
to the root nodeNd0 over TD. Specifically, starting from the node
Nd which is initiated as Ndmin, at each iteration, the parent node
Parent (Nd) is exploited to update the corresponding Πpre, Πtra,
Πsuf. Repeating the above process until the root node Nd0 is
reached.

Figure 4. (a) The generated planning decision tree TD for the task
in Example 3, where the colored nodes indicate the identified
path that satisfies Φ and the task requirement TK. The node with
double circles indicates that it is in the accepting state of NBA and
will proceed to the next task stage. (b) The sequence of NBA
state Nd.Bs, the sub-task Nd.Ts, and the task allocation state Nd.Cs

associated with the feasible plan.

10 The International Journal of Robotics Research 0(0)

Example 7. Continue with Example 6. Once the tree
TD is constructed as shown in Figure 4(a), it is ob-
served that there is one node completing the first
suffix stage of the task, that is, Prog(Nd15) = oth.
Note that Nd15 also has the minimum cost. Hence, we
can identify a path from TD as [Nd0, Nd1, Nd2, Nd3,
Nd7, Nd9, Nd13, Nd15], from which the plan can be
obtained as πpre = [ap1, ap2, ap3] and πtra = πsuf =
[ap2, ap3]. The plan can be found in Figure 4(b).

5.2.5. Tree traversal rules. In Alg. 2, TD grows by adding
all possible child nodes. A potential issue is that it can
lead to dimension explosion. To mitigate this issue, the
following traversal rules are developed to reduce the
search space by focusing more on the automaton states.

Definition 4. The traversal rules are defined as follows:

(1) For any Nd in TD, if Prog (Nd) = oth, Ndwill no longer
be traversed;

(2) For anyNd in TD, the traversed states in PreAuSt (Nd) will
not be sampled if the task stage (i.e., prefix stage, transition
stage, and suffix stage) remains the same;

(3) For any Ndi and Ndj in TD, if ∃Ndi.Bs = Ndj.Bs, Prog
(Ndi) = Prog(Ndj), and Cost(Ndi) < Cost(Ndj), then the
nodeNdjwill no longer be traversed and the child nodes of
Ndj will be pruned off from TD.

The developed traversal rules in Def. 4 can effectively
control the horizontal and vertical expansion of TD. Spe-
cifically, given that a feasible plan is in the form of
Π ¼ ΠpreΠtraðΠsuf Þw, we only need to determine the finite

plans Πpre, Πtra, and Πsuf, respectively. The traversal rule 1
will stop the tree expansion once the first suffix plan has
completed, which limits the depth of TD. The traversal rule 2
aims at avoiding duplicate searching, which limits both the
depth and width of TD. As will be proven in Lemma 3, given
an obtained plan, if there exists identical NBA states in the
same task stage, there must exist another plan with less or
the same cost. Therefore, for a node sequence within the
same task stage, the length of node sequence is less than or
equal to |S|. The traversal rules 1 and 2 jointly ensure that the
tree expansion can be completed in finite time, that is, 3 × |
S| + 1. Finally, the traversal rule 3 indicates that, for nodes
with the same task progress (the same task stage and NBA
state), the node with larger cost cannot generate child nodes,
which limits the width of the tree. That is, in the prefix stage,
transition stage, each suffix stage with different starting
NBA states, and other stage, only one node Nd 2VT with
Nd.Bs = s will be saved in TD, which means, after pruning,
the number of nodes in TD is at most ð3þ jFjÞ × jSj. In
implementation, the rules 1 and 3 are embodied in Algo-
rithm 4 (line 13 and lines 5–9), while the traversal rule 2 is
embodied in Algorithm 2 (line 2).

5.3. Interactive planning decision tree search
(IPDTS) for reactive planning

When operating in an environment with unpredictable factors,
for example, environmental change, hardware failures, or
changes of task requirements, a new root node Nd0 can be
constructed according to the current system and NBA state, and
PDTS can then be leveraged for the re-planning. However, when
encountering a local temporary task coupledwith the global task,
a re-planning satisfying both global and local tasks is required.
To do so, the plan generated byPDTS is no longer applicable and
the interactive planning decision tree search (IPDTS) is devel-
oped based on PDTS to synthesize new plans based on global
and local tasks.

The major challenge in reactive planning is that the local task
can be coupled with the global task, resulting in that the re-
planning cannot be realized by PDTS. For instance, consider a
global task ΦG = G (F (ap1 ⋀ X (F (ap2 ⋀ X (Fap3))))), which
requires the robots to consistently monitor a region by se-
quentially visiting the areas 1, 2, and 3. If unexpected events
occur in areas 1 (e.g., the detection of an intruder), the local task
will be triggered to handle such an emergency while respecting
the constraints imposed by ΦG. An example local task is
ΦL ¼ Fðap4 ⋀ X ðFðap1 ⋀ X ðFap3ÞÞÞÞÞ, which requires the
robots to visit area 4 first (e.g., report the findings to the base
station), and then visit the areas 1 and 3 sequentially. Since ΦG

requires to visit area 2 before visiting area 3, ΦL may conflict
with ΦG due to the coupling among ap1, ap2, and ap3.

To address this issue, IPDTS is developed to take into account
the constraints in both ΦL and ΦG. In this work, the local tasks
ΦL are specified by co-safe LTL formulas to represent finite-
length temporary tasks while the global taskΦG is specified by a
general LTL formula to capture a richer class of tasks. Let APG
and APL denote the atomic propositions related to ΦG and ΦL,

Chen and Kan 11

and let BG ¼ SG, SG0,ΔG,ΣG,FGð Þ and AL ¼ SL, SL0,ΔL,ð
ΣL,F LÞ represent the corresponding NBA and NFA, respec-
tively. Let Πtem ¼ sG, sL, q,Cð Þ denote the plan of the local
tasksΦL, where sG ¼ sG0 s

G
1…sGnΠ and sL ¼ sL0s

L
1…sLnΠ represent

the sequence of automaton states in BG and AL, respectively, q
represents the sequence of sub-tasks, and C represents the se-
quence of tasks allocations.

Before introducing IPDTS, the following assumption is
made.

Assumption 1. The temporal local task ΦL is compatible
with the global task ΦG.

Assumption 1 is mild, since it only requires that ΦL does
not conflict with ΦG. Otherwise, there does not exist a plan
that satisfy ΦL while respecting ΦG.

In IPDTS, the tree TD is extended to an interactive
planning decision tree, denoted by ITD, where the node set
is changed to IVT ¼ INdif g, i = 0, 1, 2….

Definition 5. The ITD is constructed based on a set of
nodes INdif g, i2N [0f g, where INd0 represents the
root and each node is defined as a tuple

INdi ¼ GBs,LBs,Ts,Cs,ETpre,EPpre

	

where GBs 2 SG and LBs 2 SL denote NBA and NFA states of
BG andAL, respectively. Similar to the function PreAuSt, PreSG
(INdi), and PreSL (INdi) denote the GBs and LBs of nodes in the
same task stage from INd0 to INdi. Prog(INdi) indicates the
global task stage of INdi and the other functions for INdi are
defined the same as in TD.

The IPDTS is developed to construct ITD in real-time and
search over it for online reactive task allocation and planning.
The general idea of IPDTS is to traverse the states and atomic
propositions related to ΦL first to search for a task plan com-
patible with ΦG. If a compatible plan does not exist due to the
couplings between ΦL and ΦG, IPDTS will traverse the states
and atomic proposition related to ΦG and modify the plan to
adapt to ΦL. The temporary plan Πtem can then be obtained by
searching overITD and then resume the global task using PDTS
for the remaining plan.

Specifically, as outlined in Alg. 6, given tasks ΦG, ΦL, and
the workspace M, NBA BG, NFA AL, and ATS T are con-
structed and the root node INd0 is initialized based on the
current system and sub-tasks (lines 1–2). The search terminates
if all nodes in ITD have been traversed, that is, FlagTra
(INd) = 1, "INd 2IVT (lines 3–6). For nodes INd that have
not been traversed, the function Get_Local, similar to
Children_Generation in Alg. 1, generates a set of child
candidates of INd, namely, LNodes, based onAL and BG, and
then determines the flag FC to indicate if there is conflict
betweenΦL andΦG (line 8). To deal with the potential conflict,
Get_Local searches over all ap 2 APL and their corresponding
automaton states in AL and BG. If there exists an ap 2 APL
feasible with AL (i.e., ∃s 2 SL such that ap 2 ΔL(INd.LBs, s))
but not with BG (i.e.,"s 2 SG such that ap Ï ΔG(INd.GBs, s)),

we setFC= 1, otherwiseFC= 0. If there exists conflict between
ΦL andΦG, Get_Global is further invoked to generate another
set of child candidates, namely, GNodes, based on BG

(lines 9–13). The goal ofGet_Global is to find all feasible ap2
APG, ap Ï APL (i.e., ∃s 2 SG such that ap 2 ΔG(INd.GBs, s))
and their corresponding automaton states in AL and BG. Due
to ap Ï APL, the LBs of GNodes is the same with the parent
node INd.LBs. Similar to Bound, IBound is developed to
generate the child nodes of INd based on the candidates
LNodes andGNodeswhile avoiding unnecessary expansion of
ITD (lines 14–16). The constructed set Children is then added
to ITD. Different fromBound, the traversal rule 3 of IBound is
re-defined as FlagTra(Child) = 1 if INd.GBs = Child.GBs,
INd.LBs = Child.LBs, Prog(INd) = Prog(Child), and
Cost(INd) ≤ Cost(Child). Besides, the traversal rule 1 is re-
defined as FlagTra(INd) = 1 if INd:LBs 2F L.

After ITD is constructed, the node INdmin can be obtained
which has the minimum cost to complete ΦL. Note that the
accepting states ofΦG are reachable1 from the global NBA state
of INdmin. The local planΠtem is then constructed by tracing back
from the root node INd0 to INdmin over ITD. Once ΦL is
completed, the robots should continue on withΦG, which needs
to be re-planned (Lines 29–31). As the accepting NBA states of
ΦG are reachable from the end global NBA state of the local task,
the PDTS can be invoked to obtain the plan ΠpreΠtraΠsuf that
starts from the end of local plan and return ΠtemΠpreΠtraΠsuf as
the plan of ΦL and ΦG.

12 The International Journal of Robotics Research 0(0)

Remark 1. For the cases of unexpected robot failures,
the developed PDTS can be immediately invoked to
generate a feasible plan. The updated plan ΠpreΠtraΠsuf

can be obtained by running Alg. 1 using the updated Nd0
as the new root node. In particular, if a robot is no longer
functional, we reset the root node properties, that is, set
Nd0.Bs as the current task state s in the NBA, and set
Nd0.Ts, PreAuSt(Nd0), Parent Nd0ð Þ, and Nd0.Cs as
empty. Then, Prog(Nd0) satisfies the following condition

ProgðNd0Þ ¼
pre, Prog ¼ pre,

tra, otherwise:

(

It indicates that the stage of ΦG will fall back at least to tra,
and Prog is the current task stage when the robot fails in the
real-time system. For each agent ri, we setNd0.EPpre(i) as its
current positions and Nd0.ETpre(i) = 0. In addition, if the
environment or the task requirement changes that requires
re-planning, we set Nd0 as before and re-plan by PDTS.
Thus, if the task stage falls back to tra,Πprewill be an empty
sequence. Finally, we delete all plan sequences after the
current stage in the original plan Π and add ΠpreΠtraΠsuf to
the end of Π, where Πsuf is the new suffix loop.

After obtaining a feasible and satisfying plan for HMRS
in an environment with the reactive task by Alg. 1 and Alg.
6, the next step is the path planning to realize the designed
TAP. The controller records the current automaton state and
the completion of each sub-task. When certain sub-task has
been completed, the automaton state will be updated and the
controller will send the next sub-task for each robot based
on TAP. Since the destination of the robots at the next
moment can be determined by the plan Π, many existing
methods (e.g., potential field based approaches, RRT,
probability road map, and receding horizon control) can be
employed to realize point-to-point navigation. When en-
countering obstacles (e.g., non-convex obstacles or specific
types of obstacle geometry), methods such as Hauser (2021)
and Sawant et al. (2023) can be applied for collision
avoidance.

5.4. Discussion

The predicted completion time for robots in Alg. 1 and Alg.
6 are calculated based on the robots’maximal linear velocity
and the distances between the robots’ current positions and
the goal positions corresponding to the current node task.
Such an estimate time can be conservative, as robots may
not move along straight lines in the environment. Since we
do not assume full knowledge of the environment and have
no clues about the future robot paths before task allocation,
we use the estimated times as a lower bound of the estimated
arrival time in this work, based on which the task allocation
is then explored over the PDT. Hence, the estimated time
can be considered as a lower bound of the task operation
times, rather than the actual operation times of robots, which
is used to determine the costs of task allocations and solve
task allocations. Although various practical factors (e.g.,

slippery of terrain and disturbances) can affect the predicted
completion time, Nd.Cs and Nd.Ts are guaranteed by se-
lection from sequentially feasible task allocations and sub-
tasks (via Alg. 2, lines 2–3 and Alg. 3, lines 16–19).
Therefore, disturbances do not compromise the feasibility of
the proposed methods. Then, the real-time framework as-
signs current target sub-tasks and paths to each agent based
on the generated plan and current task state. The current task
state, tracked through s 2 Π, is updated using real-time
feedback from system states rather than relying on predicted
completion times in TD. Hence, the impact of disturbances
during task execution can be mitigated.

6. Algorithm analysis

This section investigates the performance of PDTS and
IPDTS in the following aspects: the feasibility, the com-
pleteness, and the algorithm complexity. The feasibility
indicates if the generated plan is applicable and the algo-
rithm completeness indicates a feasible solution, if exits, is
guaranteed to be found.

6.1. The performance of PDTS

Before investigating PDTS, we first show in Lemma 1 that
Request_Response in Alg. 3 is feasible and complete in
terms of task allocation. Theorem 1 shows the PDTS,
without using the traversal rules, is guaranteed to find a
feasible task allocation and plan for the heterogeneous
multi-robot system. We then show in Lemma 2–4 that the
traversal rules do not compromise the feasibility and
completeness of PDTS, which concludes in Theorem 2 that
PDTS with traversal rules can search for the task allocation
and plan more efficiently.

Lemma 1. The Request_Response in Alg. 3 is feasible
and complete, and the task allocation is locally optimal.

Proof. Given the current tree TD, suppose q 2 Q is the
atomic task to be performed. To allocate the atomic task for
robots, Request_Response in Alg. 3 evaluates each robot
based on the updated ETpre (i.e., the estimated time to
perform q). Since the robots of each type j 2 [nc] are sorted
based on ETpre and selected according to tk 2 TK, where
tk ¼ LT qð Þ specifies the numbers and types of robots re-
quired to perform q, the task requirement TK is always
satisfied, which indicates the feasibility of task allocation
using Request_Response is guaranteed. Due to the pro-
posed task allocation mechanism, as long as there are
sufficient number and types of robots for the required tk of q
(i.e., the existence of solution), the task allocation is
guaranteed to be found and thus Request_Response is
complete.

To show the task allocation generated by
Request_Response is locally optimal, we show that the
robots can perform the current atomic task with a minimum
cost based on the current estimated time and position. Recall

Chen and Kan 13

that, for "j 2 [nc], the robots in Kj are sorted from small to
large according to ~ETpre. Since the first nj robots fromKj are
selected, where nj ¼ tk jð Þ denotes the number of robots of
type j required for ap, it indicates the task allocation for
robots of type j is locally optimal with respect to (2).
Following similar analysis, the same conclusion applies to
any type j2 nc½ �. In addition, since each robot is of only one
type, it can only be assigned for a particular tk lð Þ, l 2 [nc].
That is, each entry in tk can be individually determined.
Hence, due to the use of greedy algorithm in each step, the
task allocation by Request_Response is locally optimal
with respect to the metric (2).

Theorem 1. Give the LTL formula Φ, the task re-
quirement TK, and the environment M, if there exists a
task allocation and plan satisfyingΦ in prefix-transition-
suffix structure, the PDTS in Alg. 1 is ensured to find it
without using traversal rules.

Proof. Both task allocation and mission planning are
considered in PDTS. Since the feasibility and completeness
of the task allocation will not affect that of the task planning
as indicated in Alg. 1, they can be individually investigated.
Given that the task allocation has been proven to be feasible
and complete in Lemma 1, we only need to show that the
task plan is also feasible and complete.

If there exists a plan ΠpreΠtraΠsuf satisfying the task Φ
in the given environment M, the corresponding trajectories
of task points, automation states, and allocation states are q,
s,C, respectively, and the atomic task πi = LA (qi) satisfies πi
2 Δ(si�1, si), "πi 2 π. Note that a core idea of PDTS is to
build a tree TD. By definition,Nd0.Bs = s0 2 s,,Nd0.Ts = q0 2
q, LA (Nd0.Ts) = π0 2 π. Since TD traverses all possible
nodes, there exists a node Nd 2VT such that Nd.Bs = s1 2 s,
Nd.Ts = q12 q, LA (Nd.Ts) = π12 π. Then, for"(qk, sk,Ck)2
(q, s, C), there always exists a node ~Nd 2VT , which satisfies
~Nd:Bs ¼ sk , ~Nd:Ts ¼ qk . Hence, by tracing back the path of
nodes until the root Nd0, PDTS is ensured to find a feasible
task allocation and plan.

Theorem 1 shows that, without using traversal rules, the
PDTS in Alg. 1 is complete and feasible. The following
lemmas and theorems show that the traversal rules only
reduce the search space without compromising the feasibility
and completeness of PDTS. To facilitate the analysis, we
define a cost function W : q ×C→R that evaluates the
performance of the task sequence q and the task allocation
sequence C and define a function bestC : q → C that maps
the task sequence to an optimal allocation with the least cost.

Lemma 2. Suppose there are two task sequences q =
q0…qiqi+1…qe and q* = q0…qiqtqi+1…qe, where q* is
the same with q but differs in containing an additional
temporary task qt in the middle. It holds that W(q,
bestC(q)) ≤ W(q*, bestC(q*)).

Proof. Given q0, qt, qe 2 Q, consider two task sequences
q1 = q0qe and q

2 = q0qtqe. Let C
1 ¼ bestCðq1Þ ¼ C1

0C
1
e and

C2 ¼ bestCðq2Þ ¼ Ct
0C

t
tC

t
e denote the optimal task allo-

cation for q1 and q2, respectively. Since C1 is the optimal
task allocation for q1, the task allocation C1

0C
1
e must have a

smaller cost than any other allocation scheme (e.g., C2
0C

2
e).

Therefore, it holds that W ðq1,C2
0C

2
eÞ ≥W ðq1,C1

0C
1
eÞ.

Comparing q1 and q2, there is an additional task qt in q
2.

By definition, the predicted arrival time of each agent is the
time that the agent arrives at its last participating task. After
the sub-task q0 with C2

0 has been completed, for the agent
not in C2

t , the predicted arrival time of q2 is equal to q1. For
the agent in C2

t , suppose its predicted completion position
and time after q0 are p0 and t0, respectively. In this case, if
the agent is in c2,e, the predicted arrival time of q2 is t0 + tw +
1
v (kp0 � LM(qt)k + kLM(qt)� LM(qe)k), where tw ≥ 0 is the
waiting time for the arrival of other agents. It is larger than
the predicted arrival time of q1, that is, t0 + 1

v (kp0 �
LM(qe)k). If the agent is not in c2,e, the predicted arrival time
of q2 is t0 + 1

v (kp0 � LM(qt)k), which is larger than the
predicted arrival time of q1, that is, t0. Therefore, for each
agent, the predicted arrival time of q2 is larger than q1.
The predicted completion time of agents in c2,e is the
maximum predicted arrival time of all agents. As the cost is the
maximum predicted completion time of all agents, it always
holds W ðq2,C2Þ ¼ W ðq2,C2

0C
2
t C

2
eÞ ≥W ðq1,C2

0C
2
eÞ. Since

W ðq1,C2
0C

2
eÞ ≥W ðq1,C1

0C
1
eÞ ¼ W ðq1,C1Þ, it must hold

W (q1, C1) ≤ W (q2, C2).
Following similar analysis, if there are two task se-

quences q = q0…qiqi+1…qe and q* = q0…qiqtqi+1…qe,
where q* is the same with q but differs in containing an
additional temporary task qt in the middle. It holds thatW (q,
bestC(q)) ≤ W(q*, bestC(q*)).

Lemma 3.Given an optimal planΠbest =ΠpreΠtraΠsuf, in
any stage of the optimal plan Π ¼ q, s,Cð Þ
2 fΠpre,Πtra,Πsuf g, the states in s are all different, that
is., si ≠ sj, "si, sj 2 s, i ≠ j.

Proof. Given an optimal plan ΠpreΠtraΠsuf, suppose its
corresponding states sequence is s = s0s1…sn and the
propositions sequence is π = π0π1…πn = LA(q). If there exist
si = sj2 S, i ≤ j, satisfyingΔ(si, sj+1) ≠ ∅ and πj+12 Δ(si, sj+1),
there must exist a new state sequence snew = s0…sisj+1…sn
and a new propositions sequence πnew = LA(qnew) =
π0…πiπj+1…πn that satisfy the same task Φ in the envi-
ronment M. According to Lemma 2, there exists a plan
whose cost is smaller than Πbest, that is, W(qnew, bestC
(qnew)) ≤W(q, bestC(q)), which contradicts the optimality of
Π. Hence, the states in s are all different.

To facilitate the analysis, let Get_Path denote a function
that takes the tree TD and a node Nd 2VT as input and
output a sequence of nodes from the root Nd0 to Nd in TD,
that is,P ¼ Get_PathðNd, TDÞ, whereP¼Nd0Nd1…NdjPj
is a sequence of nodes satisfying Ndi�1 = Parent(Ndi),
i ¼ 1; 2,…, jPj, NdjPj ¼ Nd. Let Planning denote a

14 The International Journal of Robotics Research 0(0)

function that maps the node sequence to a plan, that is,
Π ¼ Π0Π1…Π Pj j ¼ PlanningðPÞ, where Πi = (Ndi.Bs,
Ndi.Ts, Ndi.Cs), i ¼ 0,…, Pj j.

Lemma 4. The traversal rule 2 does not affect the local
optimality and completeness of PDTS and the traversal
rule 3 does not affect its completeness.

Proof. According to Theorem 1, even without using the
traversal rules, the PDTS can still obtain a feasible task al-
location and plan. SupposeNdend is the leaf node with the least
cost in TD. Then P ¼ Nd0Nd1…Ndend is an optimal path in
TD generated by P ¼ Get_PathðNdend , TDÞ and the corre-
sponding optimal plan is Π¼PlanningðPÞ¼ q,s,Cð Þ with
π = LA(q) = π0π1…π|Π|. If there exists two nodesNdi,Ndj 2P,
i < j, such that Ndi.Bs = Ndj.Bs and Prog(Ndi) = Prog(Ndj),
according to Lemma 3 W(qnew, bestC(qnew)) ≤ W(q, bestC(q))
with πnew = LA(qnew) = [π0, …, πi, πj+1, …, πn].

Therefore, P is not the optimal path in TD, which
contradicts to the assumption. Hence, the traversal rule 2
does not affect the local optimality and completeness of
PDTS.

For the traversal rule 3, suppose there exist two nodes
Ndi ÏP and Ndj 2P in TD such that Ndi.Bs = Ndj.Bs,
Prog(Ndi) = Prog(Ndj), Cost(Ndi) ≤ Cost(Ndj). Then, there
exists a new node sequence Pnew ¼ Nd0…NdiNdjþ1…Ndend
that satisfies the same task Φ. It indicates that if the optimal
plan exists and is not in TD because of the traversal boundary
rules, there must exist an approximate sub-optimal path sat-
isfying Φ. Hence, we can always find a satisfying plan (e.g.,
Pnew) after applying the traversal rule 3.

Theorem 2. PDTS with Traversal Rules has feasibility
and completeness.

Proof. By Theorem 1 and Lemma 4, the PDTS with the
traversal rules is feasible and complete. Since the function
Request_Response uses greedy algorithm to ensure that
each sub-task in each step is locally optimal, the task al-
location and planning in PDTS is thus also locally optimal.

Remark 2. For each node Nd 2VT , PDTS selects the
task allocation based on the current sub-task Nd.Ts and
the system states Nd.EPpre and Nd.ETpre, without con-
sidering the potential impact of current decision on the
subsequent future sub-tasks. In other word, the task
allocation might be myopic. Therefore, PDTS compro-
mises the global optimality and is more suitable for
quickly obtaining a satisfying plan.

6.2. The performance of IPDTS

This section investigates the feasibility and completeness of
IPDTS. Since the same Request_Response is used, by
Lemma 1 the task allocation in IPDTS is feasible with the
task requirement TK. Therefore, we focus on the task
planning of IPDTS.

First, we divide tasks by coupling and obtain state
transitions of temporary and global tasks to verify
the feasibility of IPDTS. We then show that IPDTS can
find a satisfying plan as long as it exits. Similar to the
analysis of PDTS, let Get_IPath denote a function
that takes the tree ITD and a node INd 2IVT as input
and output a sequence of nodes from the root INd0
to INd in ITD, that is, P ¼ Get_IPathðINd, ITDÞ
where P ¼ INd0INd1…INdjPj is a sequence of nodes
satisfying INdi�1 ¼ Parent INdið Þ, i ¼ 1; 2,…, jPj, and
INdjPj ¼ INd. Let IPlanning denote a function that
maps the node sequence to a plan, that is, Π ¼
Π0Π1…Π Pj j ¼ PlanningðPÞ, where Πi = (INdi.GBs,
INdi.GBs, INdi.Ts, INdi.Cs), i ¼ 1,…, Pj j.

Theorem 3. The IPDTS in Alg. 6 is feasible, that is,
the generated task allocation and plan satisfies both
ΦL and ΦG.

Proof. In Alg. 6, for each parent node INd, there may
exist two classes of child nodes. The first class is LNodes
generated by Get_Local, which searches over all sub-tasks
ap 2 APL and their corresponding global NBA states sG and
local NFA states sL that satisfy ap 2 ΔL (INd.LBs, sL) [ΔG

(INd.GBs, sG). The other class is GNodes generated by
Get_Global, which searches over all sub-tasks ap 2 APG

and apÏ APL, and their corresponding global NBA states sG
that satisfy ap 2 ΔG(INd.GBs, sG). Therefore, there are three
possible cases for each node Child 2 LNodes [GNodes,
which are (1) LA(Child.Ts) 2 ΔL(INd.LBs, Child.LBs), or (2)
LA(Child.Ts) Ï APL and LA(Child.Ts) 2 ΔG(INd.GBs,
Child.LBs), or (3) LA(Child.Ts) Ï APG.

If there exists Prog(INd) = oth, then there exists a plan
Πtem ¼ sG, sL, q,Cð Þ ¼ PlanningðPÞ, where P is generated
by Get_IPathðINd, ITDÞ. For any INdi 2PnnINd0, one has
LA(INdi.Ts) 2 ΔL(Parent (INdi).LBs, INdi.LBs) or
LA(INdi.Ts) Ï APL, LA(INdi.Ts) 2 ΔG(Parent(INdi).GBs,
INdi.GBs) or LA(INdi.Ts)Ï APG. Furthermore,"qi2 q, i ≠ 0,
if LA(q) 2 APL, then LAðqÞ 2ΔLðsLi�1, s

L
i Þ and if LA(q) 2

APG, then LAðqÞ 2ΔGðsGi�1, s
G
i Þ. Therefore, if there exists

INd.GBs such that FG is reachable, Πtem satisfies ΦL and
does not violateΦG. Then, in Alg. 6, PDTS can find the new
plan ΠpreΠtraΠsuf, which satisfies ΦG. Therefore, The
IPDTS in Alg. 6 is feasible, that is, the generated task al-
location and plan satisfies both ΦL and ΦG.

Lemma 5. Consider a feasible temporary plan Πtem ¼
Πtem

0 Πtem
1 …Πtem

nΠ
¼ sG, sL, q,Cð Þ, where q ¼ q0q1…qnΠ,

sG ¼ sG0…sGnΠ , sL ¼ sL0…sLnΠ . For "Πtem
i 2Πtem with

sLi 2 sL and sGi 2 sG, if there exists a node INd 2IVT with
INd:LBs ¼ sLi , then there must exist a node INd*2IVT

with INd*:LBs ¼ sLi and sGi 2RðINd*:GBsÞ, that is, sGi is
reachable from INd*.GBs.

Proof. Since Πtem is feasible, LA (qi) Ï APG or
LAðqiÞ 2ΔGðsGi�1, s

G
i Þ for any qi 2 q. As indicated in Alg. 6,

Chen and Kan 15

by traversing ap 2 APL [APG to construct the tree ITD, all
feasible pairs of ðsGi , sLi Þ can be obtained. Then, by tra-
versing ap 2 APL, the transitions of states in BG will be

further reduced. Therefore, if there exists INd:LBs ¼ sLi ,

then there exists a node INd*2IVT such that INd*:LBs ¼
sLi and INd*:GBs 2 ðsG0 ,…, sGi Þ. Since "sGi 2 sG and sGi ≠ sG0 ,
one has RðsGi Þ � RðsGi�1Þ, which further indicates that sGi is
reachable from INd*.GBs.

Theorem 4. The IPDTS in Alg. 6 is complete, that is,
if exist, IPDTS is guaranteed to find a feasible task
allocation and plan that satisfies ΦL without vio-
lating ΦG.

Proof. Suppose Πtem ¼ Πtem
0 Πtem

1 …Πtem
nΠ

¼ sG, sL, q,Cð Þ
is a feasible temporary plan that satisfies ΦL without
violating ΦG. To prove that Πtem is ensured to be found
by the IPDTS in Alg. 6, recall that the root node INd0 of
ITD is initialized as the current automaton and system
states. That is, Πtem

0 is set according to the properties of
INd0. The idea of the following proof is to show that, for
the node INd in ITD corresponding to Πtem

i ,
"i2 ½nΠ � 1� [0f g, there always exists a child node of
INd corresponding to Πtem

iþ1.

Specifically, suppose the sequence sL ¼ sL1…sLnΠ in

Πtem satisfies that sLi ÏF L, "i 2 [nΠ � 1], and sLnΠ 2F L,

where F L is the accepting set of AL, which indicates
Πtem completes the local task ΦL in the last step.

Consider a state sLi 2 sL, i 2 [nΠ � 1], and let INd denote

the node in ITD such that INd:LBs ¼ sLi . As indicated in
Alg. 6, to generate the child nodes of INd, the state s 2
SL and ap 2 APL related to the local task ΦL are first
traversed, and the states s 2 SG and ap 2 APG will be
traversed only when there is conflict between ΦL and
ΦG. Hence, there are two possible cases.

(1) If FC = 0, that is, there is no conflict between ΦL and
ΦG, the transitions along the sequences sG and sL in the tree
ITD are feasible with ΦL and ΦG. Therefore, given that
INd:LBs ¼ sLi and INd:GBs ¼ sGi , there must exist a node
INds 2 LNodes that satisfies INds:LBs ¼ sGiþ1, which indi-
cates the state transitions over BG will not be affected during
the task operation of ΦL.

(2) If FC = 1, due to the conflicts betweenΦL andΦG, the
existence of INdj 2 LNodes that satisfies INds:LBs ¼ sLiþ1

depends on INd.GBs. If INd:GBs ¼ sGi , there must exist a
node INdj 2 LNodes that satisfies INds:LBs ¼ sLiþ1, since LA

(qi+1) Ï APG or LAðqiþ1Þ 2ΔGðsGi , sGiþ1Þ. If INd:GBs ≠ sGi , by
Lemma 5 and INd:LBs ¼ sLi , there must exist a node
INd*2IVT such that sGi is reachable from INd*.GBs over
BG and INd*:LBs ¼ INd:LBs ¼ sLi . For the expansion of

INd*, if there does not exist a node INd*s 2 LNodes that

satisfies INd*s :LBs ¼ sLiþ1, then ITD will generate nodes by
the global task. Therefore, for the following expansion, if

there does not exist a node INd**s 2 LNodes, which satisfies

INd**s :LBs ¼ sLiþ1, the global state will change and keep the

same local NFA state. As sGi is reachable from INd*.GBs

over BG, for the following expansion, there may exist a node
INd**, INd*2Get_IPathðINd**, ITDÞ, INd**:LBs ¼ sLi ,
INd**:GBs ¼ sGi . Then, for the next expansion of INd**, there

exists INd**s 2 LNodes, which satisfies INd**s :LBs ¼ sLiþ1.
In summary, there always exists INd0 2IVT with

INd0:LBs ¼ sL0 and if there exists INdparent 2IVT ,
INdparent:LBs ¼ sLi , then there exists INdchild 2IVT ,
INdchild:LBs ¼ sLiþ1. Therefore, there always exists a

node INd 2IVT such that INd:LBs ¼ sLnΠ 2F L. By

Lemma 5, there exists a node INd* such that INd*:LBs ¼
sLnΠ 2F L and sGnΠ is reachable from INd*.GBs. As FG is

reachable from sGnΠ , FG also reachable from INd*.GBs,
which indicates that Πtem does not violate ΦG. Then Π ¼
PlanningðGet_IPathðINd, ITDÞÞ is a feasible solution
that can complete ΦL without violating ΦG. Since FG is
reachable from the ending NBA states of ΦG, if there
exist feasible plannings, PDTS can obtain one of them
by Theorem 2. Therefore, the IPDTS in Alg. 6 is
complete, that is, if exist, IPDTS is guaranteed to find a
feasible task allocation and plan that satisfies both ΦL

and ΦG.

Remark 3. Theorem 3 and 4 proves feasibility and
completeness of IPDTS. Nevertheless, the task al-
location is obtained based on the previous plan
without considering future sub-tasks, and thus is
only locally optimal.

6.3. Complexity of PDTS

Based on the traversal rules, the number of nodes can be
further reduced after tree pruning. According to the traversal
rule 3, there is only one node with the same NBA state and
stage flag. Then, if the extra nodes are pruned by the traversal
rule 3, there exist at most |S| nodes in the prefix, transition,
and other stages and there are at most jF j× jSj nodes in the
suffix stage. Therefore, the maximum number of nodes in TD
is ð3þ jFjÞ × jSj and the space complexity of |S| is O(n).

According to the traversal rules 1 and 2, the traversal
time is finite. In each stage of a path of nodes, the NBA
states can be different. Therefore, the length of node
path in each stage is not larger than |S|. The maximum
number of nodes in prefix, transition, and suffix stages
with the last node in the other stage is at most 3 × |S| + 1.
Therefore, the traversal time is at most 3 × |S|. For each
traversal, according to rule (3), among the nodes with
the same node status and phase flag, only the one with
the minimum cost value can be traversed. Specially,
there are only |S|, |S|, and jF j× jSj parent nodes in the
prefix, transition, and suffix stages, respectively.
Therefore, the number of parent nodes is at most
ð2þ jFjÞ × jSj. According to Children_Generation, at
most |S| × |Q| nodes can be generated for a parent node.

16 The International Journal of Robotics Research 0(0)

Hence, the maximum number of total exploration is
3 × jSj× ðð2þ jFjÞ × jSjÞ× ðjSj× jQjÞ and the upper
bound of time complexity is O (n3) for the size of NBA |
S|. Since the number of child nodes is in general linearly
proportional to |Q|, the actual time complexity is close
to O(n2).

Noted that the agents may not all be in the areas of interest at
the same time, a dense map is often employed to fully express
the system states in the product-based methods (Ulusoy et al.,
2013) or sampling-based methods (Kantaros and Zavlanos,
2020). In this work, the system states are modeled by the
predicted completion time and position, allowing each agent has
different predicted timestamps for the current sub-task.
Therefore, a sparse map with only areas of interest can be
applied and the system states can be obtained directly by the
states iteration without searching. The task allocation can be
obtained by calculating the predicted arrival time of agents and
selecting the agents with smaller predicted arrival time for each
type. Therefore, the time and space complexity of PDTS are
both O(n) for na agents of nc types.

6.4. Complexity of IPDTS

In IPDTS, the traversal rule 3 is changed as follows. If
there exist nodes INdi, INdj 2IVT such that INdi.GBs =
INdj.GBs, INdi.LBs = INdj.LBs, Prog(INdi) = Prog(INdj),
and Cost(INdi) < Cost(INdj), INdj and all of its child nodes
are removed. Then, similar with the analysis for TD, it
holds in ITD that jfðINd:GBs, INd:LBsÞjINd2IVTg
j ≤ ð3þjFGjÞ× jSGj× jSLj. Therefore, the maximum num-
ber of nodes of ITD is ð3þ jFGjÞ × jSGj× jSLj, that is, its
space complexity is O(n2).

In each traversal, at least one automaton state of the local
and global tasks changes. According to the traversal rule 2
for IPDTS, there is no same automaton states in the same
stage in both local and global tasks. Therefore, for the local
task with one stage and the global task with three stages, the
maximum number of traversal is 1 × |SL| + 3 × |SG|. Ac-
cording to the traversal rule 3, at most |SG| × |SL| nodes can
generate child nodes in the prefix stage of the global task.
Then, there are at most |SG| × |SL| parent nodes for the
transition stage and jFGj× jSGj× jSLj parent nodes for the

suffix stage. Therefore, the number of parent nodes is at
most ð2þ jFGjÞ × jSGj× jSLj. Since at most |SG| × |SL| × |Q|
nodes can be generated for a single parent node, the
maximum number of total exploration is ðjSGj þ 3 × jSLjÞ ×
ð2þ jFGjÞ × ðjSGj× jSLjÞ2 × jQj. Therefore, the time com-
plexity of ΦL and ΦG is both O(n3). Due to the use of
Request_Response, the time and space complexity of IPDTS
remains O(n) for na agents of nc types.

7. Numerical simulations

Numerical simulations are carried out in this section to
evaluate the performance of the developed TAP framework.
Since PDTS and IPDTS are the core planning algorithms,
we first evaluate their performance under different atomic
propositions, agent numbers up to 104, and agent classes
that range from dozens to hundreds in Sections 7.1 and 7.3,
respectively. The comparison of PDTS and previous method
is provided in Section 7.2 to show the superiority of our
approach. An example is then provided in Section 7.4 to
demonstrate the effectiveness of TAP in handling a variety
of reactive tasks, such as task changes, agent failures, and
local temporary tasks. Throughout this simulation,
LTL2STAR is used to convert an LTL formula to NBA
(Gastin and Oddoux, 2001) and Matlab 2019 is used for
numerical simulation.

7.1. Performance of PDTS

We first evaluate the performance of PDTS in terms of the
solution time used to find a satisfying plan. Consider an
environment consisting of eight areas of interest in
Figure 5. Suppose there are two types of robots and each
type has four robots, that is, nc = 2, na = 8. The atomic task
api, i = 1, …, 8, represents the task of visiting area i,
respectively. For each atomic task, the task requirement is
defined as tk = (2, 2). The solution time under different
LTL tasks is shown in Table 1. Figure 5(b) indicates that
the solution time is approximately linearly proportional

to Sj j2, which is less than the upper bound of the time
complexity in Section 6.3.

Figure 5. (a) The environment contains eight regions of interest labeled as api, i2 8½ �. The robots are randomly deployed in the
environment initially. (b) The plot of solution time that varies with the number of NBA states |S|2. (c) The plot of solution time that
varies with the number of robot types. (d) The plot of solution time that varies with the number of robots.

Chen and Kan 17

To show how the performance of PDTS varies with the
robot types, we consider a group of 60 robots performing an
LTL task ΦG = Fap1 ⋀ Fap2 ⋀ Fap3 ⋀ Fap4. Suppose each
type has the same number of robots. The simulation results
are listed in Table 2. Figure 5(c) shows that the solution time
is linearly proportional to the number of robot types. Since
the total number of agents remains unchanged during the
simulation and only the number of robot type changes,
according to the complexity analysis in Section 6.3, the time
complexity of the PDTS is O(n), which is consistent with
the simulation results.

To show how the performance of PDTS varies with the
number of robots, we consider the same LTL taskΦG and fix
the number of robot types, that is, nc = 100 when na ≥ 1000.
Suppose each type has the same number of agents and each
task requires half group of each type of robots. The sim-
ulation results with various robot numbers are listed in
Table 3. Figure 5(d) shows that the solution time is linearly
proportional to the robot number, which is consistent with
the analysis in Section 6.3 that the algorithm’s time com-
plexity is O(n).

7.2. Performance comparison

Since MILP is a SOTA method for TAP (Leahy et al., 2021,
2022), our approach is further compared with MILP. We
consider an environment with four areas of interest and
vary the number of NBA states, the number of robots, and
the number of robot types, respectively. As summarized
in Table 4, PDTS outperforms MILP in terms of the
solution time and shows improved scalability to the robot
number.

Since PDTS can only obtain locally optimal plans, we
compare the locally optimal plan with the optimal plan
obtained by MILP in 50 different environments. The LTL

task is set as Φ = Fap1 ⋀ Fap2 ⋀ Fap3 ⋀ Fap4 with 16
NBA states and four types of agents. As shown in Table 5,
the average cost of PDTS is close to the optimal plans of
MILP.

When using the task decomposition and MILP to
address the TAP of HMRS as in Leahy et al. (2022), if 50
robots are considered, the solution time to obtain a
feasible plan takes 11 s and the solution time to obtain a
local optimal plan is more than 2 min. The approach
developed in Messing et al. (2022) takes about 10 min to
find a feasible plan for a group of 45 robots with 30 goals.
By combining automaton and MILP, the work of Luo and
Zavlanos (2022) takes about 4000 s for a group of 30
robots, while the work of Leahy et al. (2021) obtains the
initial motion plan in 160 s and re-planning in 47 s when
considering 19 automaton states and 10 robots. In con-
trast, the PDTS in this work can solve similar TAP
problems in nearly 0.01 s, which is at least 103 times
faster than existing methods. It can also solve the TAP
problems with over 200 automaton states and over 104

robots.

Table 2. Solution time for different robot types.

nc na Time (/s) nc na Time (/s)

2 2 × 30 0.0231 12 12 × 5 0.0297
4 4 × 15 0.0250 15 15 × 4 0.0321
6 6 × 10 0.0260 20 20 × 3 0.0355
10 10 × 6 0.0282 30 30 × 2 0.0426

Table 1. Solution time for different LTL tasks.

|AP| |S| Time (/s) |AP| |S| Time (/s)

3 8 0.00330 6 56 0.126
4 16 0.0113 6 60 0.148
5 32 0.0402 6 64 0.170
6 18 0.0214 7 96 0.410
6 33 0.0532 7 128 0.754
6 40 0.0661 8 196 1.88
6 48 0.0947 8 256 3.53
6 52 0.111

Table 3. Solution time for different robot numbers.

na nc Time (/s) na nc Time (/s)

10 5 0.0130 5000 100 7.83
100 10 0.0387 6000 100 9.32
1000 100 1.32 7000 100 11.4
2000 100 2.78 8000 100 12.8
3000 100 4.37 9000 100 14.8
4000 100 5.90 10,000 100 16.4

Table 4. Comparison of solution time with MILP.

|S| |na| |nc| MILP (/s) PDTS (/s)

16 24 4 9.903 0.01561
12 24 4 12.15 0.01215
10 24 4 16.25 0.007986
8 24 4 12.41 0.006037
16 24 3 9.813 0.01647
16 24 2 9.841 0.01445
16 24 1 9.946 0.01666
16 100 4 10.32 0.03333
16 200 4 11.35 0.05620
16 400 4 30.84 0.1016

Table 5. Comparison of the average cost of plans.

|na| TK Cost of MILP Cost of PDTS

12 (1,1,1,1) 9.96 10.18
24 (2,2,2,2) 9.82 11.12
36 (3,3,3,3) 9.60 11.60
48 (4,4,4,4) 9.82 11.44

18 The International Journal of Robotics Research 0(0)

7.3. Performance of IPDTS

To evaluate the performance of IPDTS, we consider three
types of robots and each type has five robots. Suppose the
global task isΦG =GFap1 ⋀ GFap2 ⋀GFap3 ⋀ GFap4, and
for each atomic task api, i = 1,…, 4, the task requirement is
tk = (2, 2, 2). To show how the performance of IPDTS varies
with the local temporary tasks, a set of various ΦL is
considered in Table 6. The results in Table 6 indicate that (1)
when there is coupling between ΦG and ΦL and the size of
ΦL is the same, the higher the coupling degree is, the less the
computation time required using IPDTS; (2) when there is
no coupling between ΦG and ΦL, the computation time is
small; (3) when the number of coupled atomic propositions
inΦG andΦL is the same or the number of uncoupled atomic
propositions is the same, the larger the size of ΦL is, the
longer the computation time is.

7.4. Reactive TAP

To show the reactive planning, we consider the following
cases: local temporary tasks, agent failures, task changes,
and environmental changes. Consider the farm environment
in Figure 1. Suppose there are three types of robots and each
type has five robots. The robots of type 1, 2, and 3 are
represented by red, blue, and green dots, respectively. We
consider the following atomic proposition: (1) ap1: visit
the planting area 1 with tk1 = (2, 2, 1); (2) ap2: visit the
planting area 2 with tk2 = (3, 2, 3); (3) ap3: visit the
planting area 3 with tk3 = (2, 2, 2); and (4) ap4: visit the
warehouse for maintenance by all robots, that is, tk4 = (5, 5,
5). The collaborative global task is specified as ΦG =
GFap1 ⋀ GFap2 ⋀ GFap3 ⋀ GFap4 with the task re-
quirement TK ¼ tk1, tk2, tk3, tk4f g. The simulation video is
provided.2

7.4.1. Global task. Initially, the global task ΦG with task
requirement TK is assigned to the robots. Figure 6(a) shows

that all robots are initially in the warehouse (i.e., region 4).
As the system evolves, ap1 and ap2 are completed. Due to
the lack of robots to perform ap3, a sub-group of robots is
rerouted to perform ap3 after completing ap2 in Figure 6(b).
The remaining robots return to the warehouse and wait to
perform ap4. The average time of global planning is
0.0137 s.

7.4.2. Local temporary tasks. As shown in Figure 7(a), the
robots in planting area 3 plan to return to the warehouse after
completing ap3. Suppose there is a local temporary task of
visiting the livestock area and then return to the warehouse
at the moment. Such a local task is specified as
ΦL ¼ Fap4 ⋀ Fap5 ⋀ ðð¬ap4ÞUap5Þ, where ap5 indicates
the task of visiting the livestock area with tk5 = (2, 2, 2). To
deal with (ΦL, TK), the re-plan is triggered. We run re-
planning 20 times and the average planning time of ΦL is

Table 6. Solution time for different temporary tasks.

Temporary task ΦL |SL| Coupled Uncoupled IPDTS (/s) PDTS (/s) Total (/s)

Fap4 2 1 0 0.00161 0.00613 0.00774
Fap5 2 0 1 0.000560 0.00736 0.00792
Fap3 ⋀ Fap4 4 2 0 0.00223 0.00574 0.00797
Fap4 ⋀ Fap5 4 1 1 0.00408 0.00578 0.00986
Fap5 ⋀ Fap6 4 0 2 0.00133 0.00736 0.00869
Fap2 ⋀ Fap3 ⋀ Fap4 8 3 0 0.00263 0.00577 0.00840
Fap3 ⋀ Fap4 ⋀ Fap5 8 2 1 0.00638 0.00585 0.0122
Fap4 ⋀ Fap5 ⋀ Fap6 8 1 2 0.0120 0.00556 0.0176
Fap5 ⋀ Fap6 ⋀ Fap7 8 0 3 0.00396 0.00705 0.0110
Fap1 ⋀ Fap2 ⋀ Fap3 ⋀ Fap4 16 4 0 0.00318 0.00589 0.00907
Fap2 ⋀ Fap3 ⋀ Fap4 ⋀ Fap5 16 3 1 0.00856 0.00594 0.0145
Fap3 ⋀ Fap4 ⋀ Fap5 ⋀ Fap6 16 2 2 0.0194 0.00566 0.0251
Fap4 ⋀ Fap5 ⋀ Fap6 ⋀ Fap7 16 1 3 0.0436 0.00637 0.0500
Fap5 ⋀ Fap6 ⋀ Fap7 ⋀ Fap8 16 0 4 0.0143 0.00844 0.0227

Figure 6. (a) There are 15 robots of three types (red: type 1, blue:
type 2, green: type 3) starting from the warehouse (region 4).
The robots with desired types and numbers go to region 1 and 2 to
complete ap1 and ap2, while the remaining robots go to region 3
and wait for the other agents to complete ap3. (b) After
completing ap1 and ap2, some robots go to region 3 to complete
ap3 while the others return to the warehouse and wait to perform
ap4.

Chen and Kan 19

0.00919 s. Figure 7(b) shows that after completing ap5, the
robots will return to the warehouse.

7.4.3. Agent failure. During task operation, suppose a robot
fails, that is, the robot r11 fails at the time step 85 in
Figure 8(a). The re-planning is triggered. We run re-

planning 20 times and the average planning time is
0.00934 s. Figure 8(b) shows that ap1 is completed. Since
there are only two robots of type 1 in the planting area 2, one
robot of type 1 in the planting area 1 is assigned to the
planting area 2 to replace the failed robot.

7.4.4. Task change. Figure 9(a) shows that the
system continues on the task (ΦG, TK). Suppose at time
step 143 the task requirement is changed to
TK ¼ ð2; 2; 1Þ, ð1; 1; 1Þ, ð1; 2; 2Þ, ð5; 5; 5Þf g and thus the
re-planning is triggered. We run re-planning 20 times and
the average planning time is 0.00838 s. As shown in
Figure 9(b), since only four robots of type 3 are needed for
the tasks ap1, ap2, and ap3, one robot of type 3 returns to the
warehouse and waits to perform ap4.

7.4.5. Environmental change. Consider a global mission
ΦG = GF (ap1 ⋁ ap2) ⋀ GF (ap3) ⋀ GF (ap4) with task
requirement TK = ((2, 3, 1), (2, 3, 1), (3, 3, 3), (5, 5, 5)).
Figure 10(a) shows the generated plan πpre = πtra = πsuf =
ap2ap3ap4, which indicates that a sub-group of robots
travels to region 2 to perform ap2 while another sub-
group of robots travels to region 3 prepared for per-
forming ap3. After completing ap2, one agent of type 2
will travel to region 3 and joins the robots there to col-
laboratively perform ap3. The robots then return to region
4 to perform ap4 completing the prefix plan. Suppose an
environmental change occurs then, that is, region 2 be-
comes inaccessible, as shown in Figure 10(b). A new plan
πtra = πsuf = ap1ap3ap4 is then generated. The sub-group
of robots previously going to region 2 is rerouted to
region 1 instead.

8. Experiments

Experiments are carried out in this section to demonstrate
the developed TAP framework in a real world environment.
A fleet of turtlebots is used in the experiment. Each ex-
periment is performed at least five times and the average
performance is reported. The system runs Matlab (2019b)
on Ubuntu18.04 and the ROS version is Melodic. The

Figure 7. (a) After completing ap3, on the way to the warehouse
(region 4), the local task ΦL is triggered. Thus some robots are
assigned with the new task of ap5 while the remaining robots
return to the warehouse. (b) After completing ap5, all agents return
to the warehouse to complete ap4.

Figure 8. (a) A robot of type 1 (i.e., the black dot) fails during task
operation. (b) The failed robot will no longer participate in the
following tasks. Thus, a new plan is obtained and executed.

Figure 9. (a) The task requirement of q2 changes from (3,2,3) to
(1,1,1) during task operation. (b) Since four robots of type 3 are
needed, one robot of type 3 returns to the warehouse while the
others complete the updated task.

Figure 10. (a) The initial plan. (b) The modified plan when region
2 becomes inaccessible.

20 The International Journal of Robotics Research 0(0)

experiments are performed on a laptop with Intel Core i7-
7500U 2.70 GHz and 16 Gb RAM.

8.1. Tower defense game

This section considers a real-time strategy game, namely,
tower defense, to demonstrate the capability of heteroge-
neous robots in handling both global and local tasks in an
environment with the reactive task. As shown in Figure 11,
the operating environment consists of a base, the guard
tower 1, the guard tower 2, and an alarm tower. Suppose
there are two types of robots: the defense robots (i.e., type 1)
and the reconnaissance robots (i.e., type 2). Recall that rji
denotes the ith robot of type j. We consider three types of
atomic tasks: (1) ap1: visit the guard tower 1 by one robot of
type 1 and one robot of type 2; (2) ap2: visit the guard tower
2 by one robot of type 1 and one robot of type 2; (3) ap3:

visit the base to report the findings by two robots of type 2.
The experiment video is provided.3

8.1.1. Global task. Consider a global task ΦG = GFap1 ⋀

GFap2 ⋀ GFap3, which requires the robots to consis-
tently monitor the areas of interest by performing api,
i = 1, 2, 3. The corresponding task requirement is
TK ¼ ð1; 1Þ, ð1; 1Þ, ð0; 2Þf g. As shown in Figure 12, ΦG

is successfully carried out. The construction of the automaton
BG takes 0.278 s and the generation of the task allocation and
planning using PDTS takes 0.00697 s. The generated plan
scheme is πpre = πtra = πsuf = [ap1, ap2, ap3], Cpre = [(0, 1, 0,
1), (1, 0, 1, 0), (0, 0, 1, 1)], and Ctra = Csuf = [(0, 1, 1, 0), (1, 0,
0, 1), (0, 0, 1, 1)]. Figure 12(b) shows that r12 and r

2
4 move to

the guard tower 1 to complete ap1. Figure 12(c) shows that r11
and r23 move to the guard tower 2 to complete ap2. After
completing their tasks, r23 and r24 then head to the base to
complete ap3 in Figure 12(d). Upon completing the current
tasks, the next loop of performing api, i = 1, 2, 3, starts
according to πtra and Ctra.

8.1.2. Agent failures. To deal with unexpected agent fail-
ures, suppose r11 fails during task operation. Let r

0
1 denote that

r11 no longer functions. The re-planning takes 0.00530 s using
PDTS and the plan scheme is πpre = ∅, πtra = πsuf = [ap1, ap2,
ap3], Cpre = ∅, and Ctra = Csuf = [(0, 1, 1, 0), (0, 1, 0, 1), (0, 0,
1, 1)]. Figure 13(a) shows that two robots of type 1 are on
standby at the guard tower 1 and 2, respectively. Two
robots of type 2 move to the guard tower for ap3. The robot
r11 suddenly fails and cannot participate in the following
tasks. The robot r12 goes to the guard tower 2 to replace r

1
1 to

perform ap2 after completing ap1 in Figure 13(b). Then,
the robot r12 returns to the guard tower 1 and waits to
perform ap1.

8.1.3. Task changes. Suppose one robot of type 1 and one
robot of type 2 need to return to the base to report findings.

Figure 12. The snapshots of robots performing the global taskΦG. (a) The initial positions of the robots (blue: type 1, green: type 2). (b)
A robot of type 1 and a robot of type 2 perform ap1 by visiting the guard tower 1. (c) A robot of type 1 and a robot of type 2 perform ap2
by visiting the guard tower 2. (d) Two robots of type 2 return to the base to complete ap3.

Figure 11. (a) The experiment environment. (b) The
corresponding environment in simulation. The upper left and
right corners in (a) (i.e., the orange and green blocks in (b))
represent the alarm tower (region 4) and the base (region 3),
respectively. The lower left and right corners in (a) (i.e., the dark
blue and light blue blocks in (b)) represent the guard tower 1
(region 1) and the guard tower 2 (region 2), respectively. The
plastic blocks in (a) (i.e., the thick black lines in (b)) represent
the wall that the robots cannot traverse.

Chen and Kan 21

Thus, the task requirement changes to tk3 = (0, 2) → (1, 1),
that is TK ¼ ð1; 1Þ, ð1; 1Þ, ð1; 1Þf gÞ. The re-planning takes
0.00496 s using PDTS and the plan scheme is πpre = [ap3],
πtra = πsuf = [ap1, ap2, ap3], Cpre = [(1, 0, 1, 0)], Ctra = [(0, 1,
0, 1), (1, 0, 1, 0), (0, 1, 0, 1)], and Csuf = [(1, 0, 1, 0), (0, 1, 0,
1), (1, 0, 1, 0)]. Figure 14(a) shows that ap1 and ap2 have
been completed and two robots of type 2 go to the base to
complete ap3. Then, the task requirement changes, that is,
tk3 = (0, 2) → (1, 1). The robot r11 and r23 go to the base to
perform ap3 and r24 returns to the guard tower 1 to wait to
perform ap1 in Figure 14(b). When ap1 is completed in the
stage of tra, r12 and r24 at the guard tower 1 go to the base to
wait for the execution of ap3, and r11 and r

2
3 in the base go to

the guard tower 2 to perform ap2.

8.2. Experiment 2: Hospital cleaning

Consider a hospital environment consisting of four areas:
the sterile area, the disinfected area, the robot warehouse,
and the hospital warehouse, as shown in Figure 15.
Suppose there are four robots operating in the hospital
environment: three robots of type 1 (e.g., the Burger) and
one robot of type 2 (e.g., the Waffle with a manipulator).
The robots are required to clean the sterile area and the
disinfected area and then return to the robot warehouse
for recharging and self-cleaning. Consider the following
atomic propositions: ap1: visit the robot warehouse; ap2:
clean the sterile area; ap3: clean the disinfected area. The
above daily mission is expressed as an LTL formula:
ΦG = GFap1 ⋀ GFap2 ⋀ GFap3 with task requirement
TK ¼ ð3; 1Þ, ð2; 0Þ, ð2; 0Þf g. If the robot finds infected

objects, they need to return to the robot warehouse for
self-cleaning and the robot of type 2 will be activated to
handle the infected object (e.g., pick it up and trash it).
Hence, we consider the following atomic propositions for
the robot of type 2: ap4: pick the object up; and ap5: visit
the hospital warehouse and trash the object.

Such a local temporary task is expressed as
ΦL ¼ Fap4 ⋀ Fap5 ⋀ Fap1 ⋀ ðð¬ap4ÞUap1Þ ⋀ ð¬ap5ÞUap4
with the task requirement TK ¼ ð3; 1Þ, ð2; 0Þ, ð2; 0Þ,f
ð0; 1Þ, ð0; 1Þg. The experiment video is provided.4

8.2.1. Global task. Turtlebot3 burger and waffle are used
for the robot of type 1 and 2 in the experiment, respectively.
The construction of automaton takes 0.262 s and the PDTS

Figure 13. Agent failure. (a) Two robots of type 1 are on standby
at the guard tower 1 and 2, respectively, while two robots of type
2 perform their tasks. Then, one robot of type 1 fails and the re-
planning is initiated. (b) After completing ap1, the remaining robot
of type 1 goes to the guard tower 2 to complete ap2.

Figure 14. Task change. (a) The robot has performed ap1 and ap2.
Then, the task requirement changes to tk3 = (1, 1). (b) One robot of
type 1 and one robot of type 2 return to the base to complete ap3 and
the remaining agents wait for ap1 to be executed at the guard tower 1.

Figure 15. The corresponding simulated hospital environment.
The orange and green blocks in (a) and (b) represent the hospital
warehouse (region 4) and the robot warehouse (region 1),
respectively. The dark blue and light blue blocks in (a) and (b)
represent the sterile area (region 2) and the disinfection area
(region 3), respectively. The plastic blocks in (a) (the black lines in
(b)) represent the wall that the robots cannot traverse.

22 The International Journal of Robotics Research 0(0)

planning takes 0.00725 s. The obtained task allocation and
plan is πpre = πtra = πsuf = [ap1, ap2, ap3] and Cpre = Ctra =
Csuf = [(1, 1, 1, 1), (1, 1, 0, 0), (1, 0, 1, 0)].

8.2.2. Complex temporary task. As shown in Figure 16,
once an infected object is detected, the temporary task ΦL

is triggered. The construction of automaton takes 0.283 s.
The IPDTS and PDTS planning take 0.00982 s and
0.00357 s, respectively. The plan scheme is πtem = [ap3,
ap1, ap4, ap5, ap1], πpre = ∅, πtra = [ap2, ap3], πsuf = [ap1,
ap2, ap3] and Ctem = [(0, 1, 1, 0), (1, 1, 1, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (1, 1, 1, 1)], Cpre = ∅, Ctra = [(1, 1, 0, 0), (1, 0, 1,
0)], and the suffix stage allocation Csuf = [(1, 1, 1, 1), (1, 1,
0, 0), (1, 0, 1, 0)]. To not violate the constraints of ΦG, r12
and r13 continue to perform ap3 in Figure 16(b). All agents
then return to the robot warehouse to perform ap1 in
Figure 16(c). Next, r24 will go to the sterile area in
Figure 16(d) and the hospital warehouse in Figure 16(e) to
perform ap4 and ap5 and finally return to the robot
warehouse to complete the complex temporary task in
Figure 16(f). The system continues to execute tasks ac-
cording to πtra and Ctra. The experimental results show that
the solution time of a single round of low-level planning
for four robots takes about 0.7 s, while the solution time of
high-level reactive plan only takes 0.0134 s. Thus, it can be
used in real-time for reactive planning.

9. Conclusions

This work develops a novel TAP framework that can solve
reactive temporal logic planning problems for large-scale het-
erogeneous multi-robot systems in real-time. It can generate
satisfying plan for HMRS with multiple orders of magnitude
more robots than those that existing methods can manipulate.
Rigorous analysis shows that the PDT based TAP is not only
feasible and complete, but also has lower complexity (i.e., the
solution time is only linearly proportional to the robot numbers
and types) and can be applied in real-time. In this work, the
detection of robot failures and the assignment of planning are

conducted via wireless communication. Given that wireless
communication can be subject to various constraints, such as
limited range, interference, and bandwidth limitations, future
research will explore task allocation and planning under
communication constraints. Additional research will also con-
sider the time interval, varying-time requirement, and other
complex task for HMRS.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of this
article: This work was supported in part by the National
Natural Science Foundation of China under Grant 62173314
and U2013601.

ORCID iD

Zhen Kan  https://orcid.org/0000-0003-2069-9544

Notes

1. For a NBA B ¼ S, S0,Δ,Σ,Fð Þ, if there exist finite sequences
π = π2…πn and s = s1s2…sn�1sn that satisfy πi 2 Δ(si�1, si),"πi
2 π and si 2 S, it is said sn is reachable from s1. Denote by R(si)
the set of states in S reachable from si. Apparently, one has
RðsiÞ ¼ [

sj2RðsiÞ
RðsjÞ and thus R(sj) � R(si) if sj 2 R(si).

2. https://youtu.be/37hp_ouverQ
3. https://youtu.be/_g2iaIRturM
4. https://youtu.be/v3nVmqeI6MM

References

Baier C and Katoen JP (2008) Principles of Model Checking.
Cambridge, MA: MIT Press.

Banks C, Wilson S, Coogan S, et al. (2020) Multi-agent task
allocation using cross-entropy temporal logic optimization.

Figure 16. The experiment results of performing the local temporary task. (a) An infected object is detected by two robots (i.e., blue dots)
when performing ap2 and thus the complex temporary taskΦL is triggered. (b) The robots perform ap3. (c) The robots perform ap1. (d)
One robot of type 2 performs ap4 by fetching the infected object. (e) One robot of type 2 performs ap5 by placing the infected object in the
hospital warehouse. (f) ΦL is completed and all robots return to the robot warehouse to perform ap1.

Chen and Kan 23

https://orcid.org/0000-0003-2069-9544
https://orcid.org/0000-0003-2069-9544
https://youtu.be/37hp_ouverQ
https://youtu.be/_g2iaIRturM
https://youtu.be/v3nVmqeI6MM

2020 IEEE International Conference on Robotics and Au-
tomation (ICRA). Paris: IEEE, 7712–7718.

Belta C, Bicchi A, Egerstedt M, et al. (2007) Symbolic planning
and control of robot motion [Grand Challenges of Ro-
botics]. IEEE Robotics and Automation Magazine 14(1):
61–70.

Cai M, Peng H, Li Z, et al. (2020) Receding horizon control based
motion planning with partially infeasible LTL constrains.
IEEE Control Syst. Lett 5(4): 1279–1284.

Cai M, Hasanbeig M, Xiao S, et al. (2021a) Modular deep rein-
forcement learning for continuous motion planning with
temporal logic. IEEE Robotics and Automation Letters 6(4):
7973–7980.

Cai M, Peng H, Li Z, et al. (2021b) Learning-based probabilistic
ltl motion planning with environment and motion uncer-
tainties. IEEE Transactions on Automatic Control 66(5):
2386–2392.

Cai M, Xiao S, Li Z, et al. (2023) Optimal probabilistic motion
planning with potential infeasible LTL constraints. IEEE
Transactions on Automatic Control 68(1): 301–316.

Chen Z, Zhou Z, Wang S, et al. (2024) Fast temporal logic mission
planning of multiple robots: a planning decision tree ap-
proach. IEEE Robotics and Automation Letters 9(7):
6146–6153. DOI: 10.1109/LRA.2024.3401166.

Cho K, Suh J, Tomlin CJ, et al. (2017) Cost-aware path planning
under co-safe temporal logic specifications. IEEE Robotics
and Automation Letters 2(4): 2308–2315.

Clarke EM, Grumberg O and Peled D (1999) Model Checking.
Cambridge, MA: MIT Press.

Faruq F, Parker D, Laccrda B, et al. (2018) Simultaneous task
allocation and planning under uncertainty. IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS).
Paris: IEEE, 3559–3564.

Finkbeiner B, Klein F and Metzger N (2021) Live synthesis.
International Symposium on Automated Technology for
Verification and Analysis. Berlin: Springer, 153–169.

Garrett CR, Chitnis R, Holladay R, et al. (2021) Integrated task and
motion planning. Annu. Rev. Control Robot. Auton. Syst 4(4):
265–293.

Gastin P and Oddoux D (2001) Fast LTL to Büchi automata
translation. Computer Aided Verification. CAV 2001.
Lecture Notes in Computer Science. Berlin: Springer,
53–65.

Guo M and Dimarogonas DV (2015) Multi-agent plan re-
configuration under local LTL specifications. The Interna-
tional Journal of Robotics Research 34(2): 218–235.

Guo M and Dimarogonas DV (2017) Task and motion coordi-
nation for heterogeneous multiagent systems with loosely
coupled local tasks. IEEE Transactions on Automation Sci-
ence and Engineering 14(2): 797–808.

Guo M, Bechlioulis CP, Kyriakopoulos KJ, et al. (2017) Hybrid
control of multiagent systems with contingent temporal tasks
and prescribed formation constraints. IEEE Trans. Control
Network Syst 4(4): 781–792.

Hauser K (2021) Semi-infinite programming for trajectory opti-
mization with non-convex obstacles. The International
Journal of Robotics Research 40(10-11): 1106–1122.

He K, Lahijanian M, Kavraki LE, et al. (2017) Reactive synthesis
for finite tasks under resource constraints. 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC: IEEE, 5326–5332.

Jagtap P, Soudjani S and Zamani M (2020) Formal synthesis of
stochastic systems via control barrier certificates. IEEE
Transactions on Automatic Control 66(7): 3097–3110.

Kalluraya S, Pappas GJ and Kantaros Y (2023) Resilient temporal
logic planning in the presence of robot failures. 2023 62nd
IEEE Conference on Decision and Control (CDC). Singa-
pore: IEEE, 7520–7526.

Kantaros Yand Zavlanos MM (2016) Distributed communication-
aware coverage control by mobile sensor networks. Auto-
matica 63: 209–220.

Kantaros Y and Zavlanos MM (2020) Stylus*: a temporal logic
optimal control synthesis algorithm for large-scale multi-
robot systems. The International Journal of Robotics
Research 39(7): 812–836.

Kantaros Y, Malencia M, Kumar V, et al. (2020) Reactive temporal
logic planning for multiple robots in unknown environments.
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA). Paris: IEEE, 11479–11485.

Kiesbye J, Grover K, Ashok P, et al. (2022) Planning via model
checking with decision-tree controllers. 2022 International
Conference on Robotics and Automation (ICRA), Phila-
delphia, PA: IEEE, 4347–4354.

Kloetzer M and Belta C (2010) Automatic deployment of dis-
tributed teams of robots from temporal logic motion speci-
fications. IEEE Transactions on Robotics 26(1): 48–61.

Kupferman O and Vardi MY (2001) Model checking of safety
properties. Formal Methods in System Design 19(3):
291–314.

Lacerda B and Lima PU (2019) Petri net based multi-robot task
coordination from temporal logic specifications. Robotics and
Autonomous Systems 122: 103289.

Lacerda B, Parker D and Hawes N (2014) Optimal and dynamic
planning for markov decision processes with co-safe ltl
specifications. 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Chicago, IL. IEEE,
1511–1516.

Lacerda B, Faruq F, Parker D, et al. (2019) Probabilistic planning
with formal performance guarantees for mobile service ro-
bots. The International Journal of Robotics Research 38(9):
1098–1123.

Leahy K, Serlin Z, Vasile CI, et al. (2021) Scalable and robust
algorithms for task-based coordination from high-level
specifications (scratches). IEEE Transactions on Robotics
38(4): 2516–2535.

Leahy K, Jones A and Vasile CI (2022) Fast decomposition of
temporal logic specifications for heterogeneous teams. IEEE
Robotics and Automation Letters 7(2): 2297–2304.

Liu W, Leahy K, Serlin Z, et al. (2023) Robust multi-agent co-
ordination from catl+ specifications. 2023 American Control
Conference (ACC), San Diego, CA: IEEE, 3529–3534.

Luo X and Zavlanos MM (2022) Temporal logic task allocation in
heterogeneous multirobot systems. IEEE Transactions on
Robotics 38(6): 3602–3621.

24 The International Journal of Robotics Research 0(0)

https://doi.org/10.1109/LRA.2024.3401166

Luo X, Kantaros Y and Zavlanos MM (2021) An abstraction-
free method for multirobot temporal logic optimal
control synthesis. IEEE Transactions on Robotics 37(5):
1487–1507.

Messing A, Neville G, Chernova S, et al. (2022) Grstaps:
graphically recursive simultaneous task allocation, planning,
and scheduling. The International Journal of Robotics
Research 41(2): 232–256.

Otte M and Frazzoli E (2016) RRTX: asymptotically optimal
single-query sampling-based motion planning with quick
replanning. The International Journal of Robotics Research
35(7): 797–822.

Partovi A, da Silva RR and Lin H (2018) Reactive integrated
mission and motion planning for mobile robotic manipula-
tors. 2018 Annual American Control Conference (ACC),
Milwaukee, WI: IEEE, 3538–3543.

Ramasubramanian B, Niu L, Clark A, et al. (2020) Secure control
in partially observable environments to satisfy ltl specifica-
tions. IEEE Transactions on Automatic Control 66(12):
5665–5679.

Sahin YE, Nilsson P and Ozay N (2019) Multirobot coordination
with counting temporal logics. IEEE Transactions on Ro-
botics 36(4): 1189–1206.

Sawant M, Tayebi A and Polushin I (2023) Hybrid feedback for
autonomous navigation in environments with arbitrary non-
convex obstacles. arXiv preprint arXiv:2304.10598.

Schillinger P, Bürger M and Dimarogonas DV (2018a) Hierar-
chical LTL-task mdps for multi-agent coordination through
auctioning and learning. The International Journal of Ro-
botics Research 37(7): 818–838.

Schillinger P, Bürger M and Dimarogonas DV (2018b) Simulta-
neous task allocation and planning for temporal logic goals in
heterogeneous multi-robot systems. The International Jour-
nal of Robotics Research 37(7): 818–838.

Schuppe GF and Tumova J (2020) Multi-agent strategy synthesis
for LTL specifications through assumption composition. 2020
IEEE 16th International Conference on Automation Science
and Engineering (CASE), Hong Kong: IEEE, 533–540.

Shah A, Kamath P, Li S, et al. (2023) Supervised bayesian
specification inference from demonstrations. The Interna-
tional Journal of Robotics Research 42(14): 1245–1264.

Smith SL, Tumova J, Belta C, et al. (2011) Optimal path planning
for surveillance with temporal-logic constraints. The In-
ternational Journal of Robotics Research 30(14):
1695–1708.

Tabajara LM and Vardi MY (2020) Ltlf synthesis under partial
observability: from theory to practice. arXiv preprint arXiv:
2009.10875.

Ulusoy A and Belta C (2014) Receding horizon temporal logic
control in dynamic environments. The International Journal
of Robotics Research 33(12): 1593–1607.

Ulusoy A, Smith SL, Ding XC, et al. (2013) Optimality and ro-
bustness in multi-robot path planning with temporal logic
constraints. The International Journal of Robotics Research
32(8): 889–911.

Ulusoy A, Wongpiromsarn T and Belta C (2014) Incremental
controller synthesis in probabilistic environments with tem-
poral logic constraints. The International Journal of Robotics
Research 33(8): 1130–1144.

Vasile CI, Tumova J, Karaman S, et al. (2017) Minimum-violation
scLTL motion planning for mobility-on-demand. 2017 IEEE
International Conference on Robotics and Automation
(ICRA), Singapore: IEEE, 1481–1488.

Vasile CI, Li X and Belta C (2020) Reactive sampling-based
path planning with temporal logic specifications. The
International Journal of Robotics Research 39(8):
1002–1028.

Vasilopoulos V, Kantaros Y, Pappas GJ, et al. (2021) Reactive
planning for mobile manipulation tasks in unexplored semantic
environments. 2021 IEEE International Conference on Ro-
botics and Automation (ICRA). Xi’an: IEEE, 6385–6392.

Yu P and Dimarogonas DV (2022) Distributed motion coordi-
nation for multirobot systems under LTL specifications. IEEE
Transactions on Robotics 38(2): 1047–1062.

Zhao J, Wang S and Yin X (2023) Failure-aware self-diagnostic
task planning under temporal logic specifications. IFAC-
PapersOnLine 56(2): 4582–4588.

Zhou Z, Lee DJ, Yoshinaga Y, et al. (2022) Reactive task allocation
and planning for quadrupedal and wheeled robot teaming.
2022 IEEE 18th International Conference on Automation
Science and Engineering (CASE), Mexico City: IEEE,
2110–2117.

Chen and Kan 25

	Real-time reactive task allocation and planning of large heterogeneous multi-robot systems with temporal logic specifications
	1. Introduction
	1.1. Large-scale system
	1.2. Reactive planning
	1.3. Timely planning

	2. Related works
	2.1. Task specifications and allocation
	2.2. Reactive planning

	3. Preliminaries
	4. Problem formulation
	4.1. Environment and heterogeneous multi-robot systems
	4.2. Global collaborative tasks
	4.3. Reactive tasks
	4.4. Planning model
	4.5. Problem

	5. Task allocation and planning
	5.1. Planning decision tree (PDT)
	5.2. Planning decision tree search (PDTS)
	5.2.1. Function Children_Generation
	5.2.2. Function Request_Response
	5.2.3. Function Bound
	5.2.4. Function Get_Plan
	5.2.5. Tree traversal rules

	5.3. Interactive planning decision tree search (IPDTS) for reactive planning
	5.4. Discussion

	6. Algorithm analysis
	6.1. The performance of PDTS
	6.2. The performance of IPDTS
	6.3. Complexity of PDTS
	6.4. Complexity of IPDTS

	7. Numerical simulations
	7.1. Performance of PDTS
	7.2. Performance comparison
	7.3. Performance of IPDTS
	7.4. Reactive TAP
	7.4.1. Global task
	7.4.2. Local temporary tasks
	7.4.3. Agent failure
	7.4.4. Task change
	7.4.5. Environmental change

	8. Experiments
	8.1. Tower defense game
	8.1.1. Global task
	8.1.2. Agent failures
	8.1.3. Task changes

	8.2. Experiment 2: Hospital cleaning
	8.2.1. Global task
	8.2.2. Complex temporary task

	9. Conclusions
	Declaration of conflicting interests
	Funding
	ORCID iD
	Notes
	References

